Properties

Label 12.0.34162868224000000.1
Degree $12$
Signature $[0, 6]$
Discriminant $3.416\times 10^{16}$
Root discriminant \(23.87\)
Ramified primes $2,5,19$
Class number $2$
Class group [2]
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 10*x^10 - 16*x^9 + 28*x^8 - 36*x^7 + 58*x^6 - 52*x^5 + 79*x^4 - 60*x^3 + 92*x^2 - 52*x + 41)
 
gp: K = bnfinit(y^12 - 4*y^11 + 10*y^10 - 16*y^9 + 28*y^8 - 36*y^7 + 58*y^6 - 52*y^5 + 79*y^4 - 60*y^3 + 92*y^2 - 52*y + 41, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^12 - 4*x^11 + 10*x^10 - 16*x^9 + 28*x^8 - 36*x^7 + 58*x^6 - 52*x^5 + 79*x^4 - 60*x^3 + 92*x^2 - 52*x + 41);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^12 - 4*x^11 + 10*x^10 - 16*x^9 + 28*x^8 - 36*x^7 + 58*x^6 - 52*x^5 + 79*x^4 - 60*x^3 + 92*x^2 - 52*x + 41)
 

\( x^{12} - 4 x^{11} + 10 x^{10} - 16 x^{9} + 28 x^{8} - 36 x^{7} + 58 x^{6} - 52 x^{5} + 79 x^{4} + \cdots + 41 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $12$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 6]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(34162868224000000\) \(\medspace = 2^{24}\cdot 5^{6}\cdot 19^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(23.87\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{2}5^{1/2}19^{2/3}\approx 63.686501757102$
Ramified primes:   \(2\), \(5\), \(19\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $6$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3993007}a^{11}-\frac{369155}{3993007}a^{10}+\frac{594519}{3993007}a^{9}+\frac{360356}{3993007}a^{8}+\frac{1250477}{3993007}a^{7}+\frac{732179}{3993007}a^{6}-\frac{1959148}{3993007}a^{5}+\frac{29442}{3993007}a^{4}+\frac{421391}{3993007}a^{3}-\frac{1335402}{3993007}a^{2}+\frac{318595}{3993007}a+\frac{365281}{3993007}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{550170}{3993007}a^{11}-\frac{1691309}{3993007}a^{10}+\frac{3342832}{3993007}a^{9}-\frac{3723044}{3993007}a^{8}+\frac{7776039}{3993007}a^{7}-\frac{7597758}{3993007}a^{6}+\frac{15840434}{3993007}a^{5}-\frac{5517266}{3993007}a^{4}+\frac{22665085}{3993007}a^{3}-\frac{8788382}{3993007}a^{2}+\frac{24340913}{3993007}a-\frac{5387547}{3993007}$, $\frac{286945}{3993007}a^{11}-\frac{691779}{3993007}a^{10}+\frac{1016394}{3993007}a^{9}-\frac{556852}{3993007}a^{8}+\frac{2520738}{3993007}a^{7}-\frac{953157}{3993007}a^{6}+\frac{3739663}{3993007}a^{5}+\frac{3024885}{3993007}a^{4}+\frac{7788535}{3993007}a^{3}+\frac{1989865}{3993007}a^{2}+\frac{3340017}{3993007}a+\frac{3115802}{3993007}$, $\frac{270776}{3993007}a^{11}-\frac{1370049}{3993007}a^{10}+\frac{3399539}{3993007}a^{9}-\frac{5348810}{3993007}a^{8}+\frac{8138580}{3993007}a^{7}-\frac{12268674}{3993007}a^{6}+\frac{16658165}{3993007}a^{5}-\frac{17820015}{3993007}a^{4}+\frac{18366419}{3993007}a^{3}-\frac{24035095}{3993007}a^{2}+\frac{18928520}{3993007}a-\frac{13427362}{3993007}$, $\frac{217406}{3993007}a^{11}-\frac{1064237}{3993007}a^{10}+\frac{2354131}{3993007}a^{9}-\frac{3233811}{3993007}a^{8}+\frac{5307081}{3993007}a^{7}-\frac{9102395}{3993007}a^{6}+\frac{11512616}{3993007}a^{5}-\frac{11901790}{3993007}a^{4}+\frac{13351166}{3993007}a^{3}-\frac{16826284}{3993007}a^{2}+\frac{13744169}{3993007}a-\frac{6628144}{3993007}$, $\frac{354281}{3993007}a^{11}-\frac{1644284}{3993007}a^{10}+\frac{3652603}{3993007}a^{9}-\frac{5121782}{3993007}a^{8}+\frac{8094408}{3993007}a^{7}-\frac{12584463}{3993007}a^{6}+\frac{15494222}{3993007}a^{5}-\frac{14965110}{3993007}a^{4}+\frac{16251183}{3993007}a^{3}-\frac{24072616}{3993007}a^{2}+\frac{13805347}{3993007}a-\frac{17210937}{3993007}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 597.4033513730107 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 597.4033513730107 \cdot 2}{2\cdot\sqrt{34162868224000000}}\cr\approx \mathstrut & 0.198870196058062 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^12 - 4*x^11 + 10*x^10 - 16*x^9 + 28*x^8 - 36*x^7 + 58*x^6 - 52*x^5 + 79*x^4 - 60*x^3 + 92*x^2 - 52*x + 41)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^12 - 4*x^11 + 10*x^10 - 16*x^9 + 28*x^8 - 36*x^7 + 58*x^6 - 52*x^5 + 79*x^4 - 60*x^3 + 92*x^2 - 52*x + 41, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^12 - 4*x^11 + 10*x^10 - 16*x^9 + 28*x^8 - 36*x^7 + 58*x^6 - 52*x^5 + 79*x^4 - 60*x^3 + 92*x^2 - 52*x + 41);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^12 - 4*x^11 + 10*x^10 - 16*x^9 + 28*x^8 - 36*x^7 + 58*x^6 - 52*x^5 + 79*x^4 - 60*x^3 + 92*x^2 - 52*x + 41);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_6\times S_3$ (as 12T18):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{2}, \sqrt{-5})\), 6.0.23104000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 36
Degree 18 siblings: 18.6.297066099785564011102208000000.1, 18.0.4641657809149437673472000000000.1
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.6.0.1}{6} }^{2}$ R ${\href{/padicField/7.3.0.1}{3} }^{4}$ ${\href{/padicField/11.6.0.1}{6} }^{2}$ ${\href{/padicField/13.6.0.1}{6} }^{2}$ ${\href{/padicField/17.6.0.1}{6} }^{2}$ R ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{6}$ ${\href{/padicField/29.6.0.1}{6} }^{2}$ ${\href{/padicField/31.2.0.1}{2} }^{6}$ ${\href{/padicField/37.6.0.1}{6} }^{2}$ ${\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{6}$ ${\href{/padicField/43.6.0.1}{6} }^{2}$ ${\href{/padicField/47.3.0.1}{3} }^{4}$ ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ ${\href{/padicField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.12.24.318$x^{12} + 10 x^{10} + 12 x^{9} + 110 x^{8} + 80 x^{7} + 752 x^{6} + 512 x^{5} + 1636 x^{4} + 1504 x^{3} + 1224 x^{2} + 1008 x - 648$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
\(5\) Copy content Toggle raw display 5.12.6.1$x^{12} + 120 x^{11} + 6032 x^{10} + 163208 x^{9} + 2529528 x^{8} + 21853448 x^{7} + 92223962 x^{6} + 138649448 x^{5} + 223472880 x^{4} + 401794296 x^{3} + 295909124 x^{2} + 118616440 x + 126881009$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
\(19\) Copy content Toggle raw display 19.6.0.1$x^{6} + 17 x^{3} + 17 x^{2} + 6 x + 2$$1$$6$$0$$C_6$$[\ ]^{6}$
19.6.4.1$x^{6} + 304 x^{3} - 5415$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
* 1.20.2t1.a.a$1$ $ 2^{2} \cdot 5 $ \(\Q(\sqrt{-5}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.40.2t1.b.a$1$ $ 2^{3} \cdot 5 $ \(\Q(\sqrt{-10}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.8.2t1.a.a$1$ $ 2^{3}$ \(\Q(\sqrt{2}) \) $C_2$ (as 2T1) $1$ $1$
1.760.6t1.b.a$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
1.19.3t1.a.a$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
1.19.3t1.a.b$1$ $ 19 $ 3.3.361.1 $C_3$ (as 3T1) $0$ $1$
1.152.6t1.b.a$1$ $ 2^{3} \cdot 19 $ 6.6.66724352.1 $C_6$ (as 6T1) $0$ $1$
1.380.6t1.b.a$1$ $ 2^{2} \cdot 5 \cdot 19 $ 6.0.1042568000.1 $C_6$ (as 6T1) $0$ $-1$
1.760.6t1.b.b$1$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.8340544000.3 $C_6$ (as 6T1) $0$ $-1$
1.380.6t1.b.b$1$ $ 2^{2} \cdot 5 \cdot 19 $ 6.0.1042568000.1 $C_6$ (as 6T1) $0$ $-1$
1.152.6t1.b.b$1$ $ 2^{3} \cdot 19 $ 6.6.66724352.1 $C_6$ (as 6T1) $0$ $1$
2.14440.3t2.a.a$2$ $ 2^{3} \cdot 5 \cdot 19^{2}$ 3.1.14440.1 $S_3$ (as 3T2) $1$ $0$
2.57760.6t3.a.a$2$ $ 2^{5} \cdot 5 \cdot 19^{2}$ 6.0.16681088000.5 $D_{6}$ (as 6T3) $1$ $0$
* 2.760.6t5.a.a$2$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.23104000.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.3040.12t18.c.a$2$ $ 2^{5} \cdot 5 \cdot 19 $ 12.0.34162868224000000.1 $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.760.6t5.a.b$2$ $ 2^{3} \cdot 5 \cdot 19 $ 6.0.23104000.1 $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.3040.12t18.c.b$2$ $ 2^{5} \cdot 5 \cdot 19 $ 12.0.34162868224000000.1 $C_6\times S_3$ (as 12T18) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.