Normalized defining polynomial
\( x^{12} + 732 x^{10} + 200934 x^{8} + 25421872 x^{6} + 1453813305 x^{4} + 30405466836 x^{2} + 51520374361 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(334874047209198762552459264=2^{24}\cdot 3^{18}\cdot 61^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $162.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4392=2^{3}\cdot 3^{2}\cdot 61\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4392}(1,·)$, $\chi_{4392}(1219,·)$, $\chi_{4392}(1829,·)$, $\chi_{4392}(365,·)$, $\chi_{4392}(4271,·)$, $\chi_{4392}(2929,·)$, $\chi_{4392}(4147,·)$, $\chi_{4392}(2807,·)$, $\chi_{4392}(1465,·)$, $\chi_{4392}(2683,·)$, $\chi_{4392}(3293,·)$, $\chi_{4392}(1343,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{61} a^{2}$, $\frac{1}{61} a^{3}$, $\frac{1}{3721} a^{4}$, $\frac{1}{3721} a^{5}$, $\frac{1}{226981} a^{6}$, $\frac{1}{226981} a^{7}$, $\frac{1}{13845841} a^{8}$, $\frac{1}{13845841} a^{9}$, $\frac{1}{844596301} a^{10}$, $\frac{1}{844596301} a^{11}$
Class group and class number
$C_{42}\times C_{27090}$, which has order $1137780$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{13845841} a^{8} + \frac{8}{226981} a^{6} + \frac{19}{3721} a^{4} + \frac{12}{61} a^{2} \), \( \frac{1}{3721} a^{4} + \frac{4}{61} a^{2} + 2 \), \( \frac{1}{844596301} a^{10} + \frac{10}{13845841} a^{8} + \frac{35}{226981} a^{6} + \frac{50}{3721} a^{4} + \frac{25}{61} a^{2} + 1 \), \( \frac{1}{61} a^{2} + 3 \), \( \frac{1}{844596301} a^{10} + \frac{10}{13845841} a^{8} + \frac{35}{226981} a^{6} + \frac{50}{3721} a^{4} + \frac{24}{61} a^{2} - 1 \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325.67540279491664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-122}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-366}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{3}, \sqrt{-122})\), 6.0.762481838592.7, \(\Q(\zeta_{36})^+\), 6.0.2287445515776.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.318 | $x^{12} + 60 x^{11} + 14 x^{10} + 36 x^{9} - 34 x^{8} - 32 x^{7} - 48 x^{6} - 32 x^{5} + 36 x^{4} - 16 x^{3} - 40 x^{2} - 48 x + 56$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $61$ | 61.6.3.2 | $x^{6} - 3721 x^{2} + 2269810$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 61.6.3.2 | $x^{6} - 3721 x^{2} + 2269810$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |