Normalized defining polynomial
\( x^{12} - 2 x^{11} + 49 x^{10} + 344 x^{9} + 10316 x^{8} - 55720 x^{7} + 1515592 x^{6} - 7745318 x^{5} + 102108541 x^{4} - 392352750 x^{3} + 3740971227 x^{2} - 7788574854 x + 51646472991 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(330966364856493592168450228224=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $288.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3192=2^{3}\cdot 3\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3192}(1,·)$, $\chi_{3192}(1285,·)$, $\chi_{3192}(961,·)$, $\chi_{3192}(1033,·)$, $\chi_{3192}(1217,·)$, $\chi_{3192}(2957,·)$, $\chi_{3192}(1265,·)$, $\chi_{3192}(2773,·)$, $\chi_{3192}(2705,·)$, $\chi_{3192}(2725,·)$, $\chi_{3192}(797,·)$, $\chi_{3192}(3029,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{57} a^{6} - \frac{1}{57} a^{5} + \frac{8}{19} a^{4} + \frac{25}{57} a^{3} - \frac{7}{57} a^{2} - \frac{8}{19} a + \frac{4}{19}$, $\frac{1}{57} a^{7} + \frac{4}{57} a^{5} - \frac{9}{19} a^{4} - \frac{20}{57} a^{3} - \frac{4}{19} a^{2} - \frac{4}{19} a + \frac{4}{19}$, $\frac{1}{2907} a^{8} - \frac{2}{2907} a^{7} + \frac{16}{2907} a^{6} - \frac{389}{2907} a^{5} - \frac{1160}{2907} a^{4} - \frac{128}{2907} a^{3} + \frac{144}{323} a^{2} - \frac{388}{969} a + \frac{6}{19}$, $\frac{1}{8721} a^{9} - \frac{1}{8721} a^{8} - \frac{37}{8721} a^{7} + \frac{35}{8721} a^{6} - \frac{223}{8721} a^{5} + \frac{191}{8721} a^{4} - \frac{215}{459} a^{3} - \frac{150}{323} a^{2} + \frac{734}{2907} a - \frac{4}{57}$, $\frac{1}{36479943} a^{10} - \frac{488}{12159981} a^{9} - \frac{254}{36479943} a^{8} - \frac{187733}{36479943} a^{7} + \frac{262576}{36479943} a^{6} - \frac{1795460}{36479943} a^{5} - \frac{1902035}{12159981} a^{4} - \frac{16484501}{36479943} a^{3} + \frac{5074259}{12159981} a^{2} - \frac{6865}{639999} a + \frac{54629}{238431}$, $\frac{1}{448999350837879107584789425819} a^{11} - \frac{402298606983238187017}{49888816759764345287198825091} a^{10} + \frac{13030423763663206786189657}{448999350837879107584789425819} a^{9} + \frac{54496616894290411142329351}{448999350837879107584789425819} a^{8} + \frac{770849374676860587987809734}{448999350837879107584789425819} a^{7} + \frac{3234120907513160891405556889}{448999350837879107584789425819} a^{6} - \frac{21834955220188193001833628229}{149666450279293035861596475273} a^{5} + \frac{104843082552305281806216824005}{448999350837879107584789425819} a^{4} - \frac{32733572714766014551366059584}{149666450279293035861596475273} a^{3} + \frac{53000535940452018660156349895}{149666450279293035861596475273} a^{2} - \frac{1409230137322553968621994480}{2934636279986137958070519123} a - \frac{303176463002960260334984}{975286234624838138275347}$
Class group and class number
$C_{4}\times C_{4}\times C_{12}\times C_{7812}$, which has order $1499904$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 75910.8816311755 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-798}) \), \(\Q(\sqrt{-38}) \), \(\Q(\sqrt{21}) \), 3.3.17689.1, \(\Q(\sqrt{21}, \sqrt{-38})\), 6.0.575296762424832.1, 6.0.3043898213888.1, 6.6.59138236269.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $19$ | 19.12.10.2 | $x^{12} + 57 x^{6} + 1444$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |