Normalized defining polynomial
\( x^{12} - 2 x^{11} + 73 x^{10} - 760 x^{9} + 10554 x^{8} - 73744 x^{7} + 842072 x^{6} - 2403456 x^{5} + 14402624 x^{4} - 55312800 x^{3} + 287379984 x^{2} - 84951680 x + 7114036000 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(330966364856493592168450228224=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $288.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3192=2^{3}\cdot 3\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3192}(1,·)$, $\chi_{3192}(2507,·)$, $\chi_{3192}(2273,·)$, $\chi_{3192}(521,·)$, $\chi_{3192}(107,·)$, $\chi_{3192}(619,·)$, $\chi_{3192}(1873,·)$, $\chi_{3192}(179,·)$, $\chi_{3192}(691,·)$, $\chi_{3192}(2393,·)$, $\chi_{3192}(121,·)$, $\chi_{3192}(1483,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{20} a^{4} + \frac{3}{10} a^{3} + \frac{1}{20} a^{2} - \frac{1}{5} a - \frac{1}{2}$, $\frac{1}{20} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{3}{10} a$, $\frac{1}{1120} a^{6} + \frac{3}{560} a^{5} - \frac{13}{1120} a^{4} + \frac{103}{280} a^{3} - \frac{61}{280} a^{2} - \frac{2}{35} a - \frac{15}{56}$, $\frac{1}{11200} a^{7} + \frac{1}{2800} a^{6} + \frac{31}{11200} a^{5} - \frac{117}{5600} a^{4} + \frac{151}{560} a^{3} + \frac{319}{1400} a^{2} - \frac{59}{560} a - \frac{25}{56}$, $\frac{1}{22400} a^{8} + \frac{1}{4480} a^{6} - \frac{209}{11200} a^{5} + \frac{83}{11200} a^{4} + \frac{477}{1400} a^{3} - \frac{417}{5600} a^{2} - \frac{159}{560} a - \frac{25}{112}$, $\frac{1}{224000} a^{9} - \frac{1}{112000} a^{8} + \frac{1}{44800} a^{7} - \frac{3}{14000} a^{6} - \frac{2279}{112000} a^{5} - \frac{1}{224} a^{4} + \frac{25667}{56000} a^{3} - \frac{647}{7000} a^{2} + \frac{1097}{5600} a - \frac{3}{14}$, $\frac{1}{250880000} a^{10} - \frac{27}{25088000} a^{9} + \frac{2971}{250880000} a^{8} - \frac{881}{31360000} a^{7} - \frac{127}{640000} a^{6} + \frac{129}{80000} a^{5} + \frac{11589}{640000} a^{4} + \frac{2181601}{7840000} a^{3} - \frac{2913563}{15680000} a^{2} - \frac{384429}{1568000} a + \frac{14759}{125440}$, $\frac{1}{593143710841830400000} a^{11} - \frac{19780025087}{296571855420915200000} a^{10} + \frac{1010236448269851}{593143710841830400000} a^{9} - \frac{1067773199998579}{74142963855228800000} a^{8} - \frac{2493836898015299}{74142963855228800000} a^{7} + \frac{113322087971237}{264796299482960000} a^{6} + \frac{129879307975618827}{10591851979318400000} a^{5} - \frac{76076539316444367}{3707148192761440000} a^{4} - \frac{7203141953185317171}{37071481927614400000} a^{3} - \frac{4765501641700582969}{18535740963807200000} a^{2} - \frac{3242262982494424993}{7414296385522880000} a + \frac{3811277174294059}{18535740963807200}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{40}\times C_{7320}$, which has order $4684800$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 452719.52039602736 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-114}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-399}) \), 3.3.17689.2, \(\Q(\sqrt{14}, \sqrt{-114})\), 6.0.82185251774976.2, 6.6.1121436184064.1, 6.0.1123626489111.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $19$ | 19.12.10.3 | $x^{12} - 19 x^{6} + 5776$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |