Normalized defining polynomial
\( x^{12} - 4 x^{11} - 164 x^{10} + 760 x^{9} + 11031 x^{8} - 57920 x^{7} - 73396 x^{6} + 501456 x^{5} + 8722892 x^{4} - 27044448 x^{3} + 36508032 x^{2} - 129311488 x + 2287368448 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(330966364856493592168450228224=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $288.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3192=2^{3}\cdot 3\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3192}(1,·)$, $\chi_{3192}(2819,·)$, $\chi_{3192}(1171,·)$, $\chi_{3192}(2273,·)$, $\chi_{3192}(379,·)$, $\chi_{3192}(521,·)$, $\chi_{3192}(1873,·)$, $\chi_{3192}(419,·)$, $\chi_{3192}(1243,·)$, $\chi_{3192}(2393,·)$, $\chi_{3192}(121,·)$, $\chi_{3192}(2747,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{532} a^{6} + \frac{131}{532} a^{5} + \frac{7}{76} a^{4} - \frac{187}{532} a^{3} + \frac{3}{19} a^{2} - \frac{39}{266} a + \frac{33}{133}$, $\frac{1}{532} a^{7} - \frac{22}{133} a^{5} + \frac{11}{133} a^{4} + \frac{109}{532} a^{3} - \frac{44}{133} a^{2} + \frac{121}{266} a + \frac{66}{133}$, $\frac{1}{2128} a^{8} - \frac{1}{1064} a^{6} + \frac{101}{532} a^{5} - \frac{465}{2128} a^{4} - \frac{2}{133} a^{3} - \frac{257}{1064} a^{2} - \frac{37}{133} a - \frac{22}{133}$, $\frac{1}{21280} a^{9} + \frac{1}{10640} a^{8} + \frac{1}{10640} a^{7} - \frac{1}{5320} a^{6} - \frac{5053}{21280} a^{5} - \frac{2311}{10640} a^{4} - \frac{2197}{10640} a^{3} + \frac{187}{760} a^{2} + \frac{41}{266} a - \frac{37}{95}$, $\frac{1}{56565602240} a^{10} + \frac{29321}{3535350140} a^{9} + \frac{94497}{707070028} a^{8} - \frac{258124}{883837535} a^{7} + \frac{37141551}{56565602240} a^{6} + \frac{270914759}{14141400560} a^{5} - \frac{50467331}{372142120} a^{4} + \frac{14282875}{1414140056} a^{3} + \frac{551804781}{14141400560} a^{2} + \frac{214791718}{883837535} a - \frac{1109567}{21297290}$, $\frac{1}{2799214409118768260480} a^{11} + \frac{425629643}{87475450284961508140} a^{10} - \frac{964250903424471}{99971943182813152160} a^{9} + \frac{23577065111205313}{174950900569923016280} a^{8} - \frac{3009420427344711}{29465414832829139584} a^{7} + \frac{89040413138175221}{99971943182813152160} a^{6} - \frac{156020973345404066097}{699803602279692065120} a^{5} - \frac{1736659049861261439}{49985971591406576080} a^{4} - \frac{326050580991494427521}{699803602279692065120} a^{3} - \frac{6945487002487109}{17178996521005795} a^{2} - \frac{22502200979850651}{87475450284961508140} a - \frac{14836663203434147}{37640038848950735}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{38064}$, which has order $1218048$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 208587.07105926925 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{38}) \), \(\Q(\sqrt{-399}) \), \(\Q(\sqrt{-42}) \), 3.3.17689.2, \(\Q(\sqrt{38}, \sqrt{-42})\), 6.6.3043898213888.1, 6.0.1123626489111.2, 6.0.30278776969728.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $19$ | 19.12.10.3 | $x^{12} - 19 x^{6} + 5776$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |