Normalized defining polynomial
\( x^{12} - 2 x^{11} + 121 x^{10} - 840 x^{9} + 11938 x^{8} - 75536 x^{7} + 810648 x^{6} - 3407360 x^{5} + 20369536 x^{4} - 53662112 x^{3} + 232061456 x^{2} - 360419200 x + 2117917600 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(330966364856493592168450228224=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $288.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3192=2^{3}\cdot 3\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3192}(1,·)$, $\chi_{3192}(2659,·)$, $\chi_{3192}(2273,·)$, $\chi_{3192}(521,·)$, $\chi_{3192}(2539,·)$, $\chi_{3192}(11,·)$, $\chi_{3192}(1873,·)$, $\chi_{3192}(1331,·)$, $\chi_{3192}(2393,·)$, $\chi_{3192}(787,·)$, $\chi_{3192}(121,·)$, $\chi_{3192}(1451,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{20} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{3}{10} a$, $\frac{1}{480} a^{6} - \frac{1}{48} a^{5} - \frac{3}{32} a^{4} + \frac{1}{8} a^{3} + \frac{41}{120} a^{2} + \frac{1}{3} a + \frac{5}{24}$, $\frac{1}{960} a^{7} - \frac{1}{960} a^{5} + \frac{3}{32} a^{4} + \frac{11}{240} a^{3} - \frac{1}{8} a^{2} - \frac{31}{240} a + \frac{1}{24}$, $\frac{1}{1920} a^{8} + \frac{1}{1920} a^{6} - \frac{13}{960} a^{5} - \frac{23}{960} a^{4} + \frac{1}{4} a^{3} - \frac{63}{160} a^{2} - \frac{1}{80} a + \frac{5}{48}$, $\frac{1}{19200} a^{9} + \frac{1}{4800} a^{8} + \frac{1}{19200} a^{7} + \frac{7}{9600} a^{6} + \frac{59}{3200} a^{5} - \frac{331}{4800} a^{4} + \frac{637}{1600} a^{3} + \frac{159}{800} a^{2} + \frac{161}{480} a - \frac{13}{48}$, $\frac{1}{148070400} a^{10} - \frac{21}{987136} a^{9} - \frac{5273}{29614080} a^{8} - \frac{893}{3701760} a^{7} - \frac{5033}{6169600} a^{6} + \frac{2899}{231360} a^{5} - \frac{199399}{3701760} a^{4} + \frac{62839}{308480} a^{3} + \frac{1107101}{9254400} a^{2} + \frac{43433}{308480} a + \frac{61067}{370176}$, $\frac{1}{16195791221589918720000} a^{11} + \frac{9738306816121}{4048947805397479680000} a^{10} + \frac{56156253726163099}{3239158244317983744000} a^{9} + \frac{268909067942842843}{1619579122158991872000} a^{8} + \frac{190238338625860457}{674824634232913280000} a^{7} + \frac{37144263703842919}{337412317116456640000} a^{6} - \frac{4763282714914624823}{404894780539747968000} a^{5} - \frac{4644237171311045221}{202447390269873984000} a^{4} + \frac{39194636492119627547}{337412317116456640000} a^{3} + \frac{9798380919976743743}{126529618918671240000} a^{2} + \frac{18684067649511467719}{40489478053974796800} a + \frac{1876621894440037523}{20244739026987398400}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{102480}$, which has order $3279360$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 928596.3639515013 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-266}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-399}) \), 3.3.17689.2, \(\Q(\sqrt{6}, \sqrt{-266})\), 6.0.21307287497216.2, 6.6.4325539567104.1, 6.0.1123626489111.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $19$ | 19.6.5.3 | $x^{6} - 4864$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.3 | $x^{6} - 4864$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |