Normalized defining polynomial
\( x^{12} - 2 x^{11} + 145 x^{10} - 880 x^{9} + 13350 x^{8} - 77392 x^{7} + 789272 x^{6} - 3718848 x^{5} + 22127456 x^{4} - 62065824 x^{3} + 227928720 x^{2} - 351879680 x + 1003941856 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(330966364856493592168450228224=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $288.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3192=2^{3}\cdot 3\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3192}(1,·)$, $\chi_{3192}(2117,·)$, $\chi_{3192}(2273,·)$, $\chi_{3192}(521,·)$, $\chi_{3192}(797,·)$, $\chi_{3192}(1873,·)$, $\chi_{3192}(277,·)$, $\chi_{3192}(677,·)$, $\chi_{3192}(2393,·)$, $\chi_{3192}(121,·)$, $\chi_{3192}(1597,·)$, $\chi_{3192}(1717,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{160} a^{6} + \frac{7}{80} a^{5} + \frac{7}{160} a^{4} + \frac{13}{40} a^{3} - \frac{3}{8} a^{2} - \frac{19}{40}$, $\frac{1}{320} a^{7} + \frac{11}{320} a^{5} + \frac{17}{160} a^{4} + \frac{13}{80} a^{3} - \frac{3}{8} a^{2} - \frac{39}{80} a + \frac{13}{40}$, $\frac{1}{640} a^{8} + \frac{1}{640} a^{6} - \frac{13}{320} a^{5} + \frac{31}{320} a^{4} + \frac{3}{8} a^{3} + \frac{11}{160} a^{2} + \frac{33}{80} a + \frac{7}{16}$, $\frac{1}{1280} a^{9} + \frac{1}{1280} a^{7} + \frac{1}{640} a^{6} + \frac{67}{640} a^{5} - \frac{11}{320} a^{4} + \frac{11}{64} a^{3} + \frac{3}{160} a^{2} + \frac{7}{32} a + \frac{7}{80}$, $\frac{1}{204800} a^{10} + \frac{9}{102400} a^{9} + \frac{87}{204800} a^{8} - \frac{33}{25600} a^{7} - \frac{17}{25600} a^{6} - \frac{91}{1280} a^{5} - \frac{463}{5120} a^{4} - \frac{2479}{6400} a^{3} - \frac{3239}{12800} a^{2} - \frac{85}{256} a - \frac{1713}{12800}$, $\frac{1}{50708785882342182817177600} a^{11} - \frac{10142734291477159573}{50708785882342182817177600} a^{10} - \frac{19787110707280584076711}{50708785882342182817177600} a^{9} + \frac{3465500788208894185079}{50708785882342182817177600} a^{8} - \frac{1047313798414337964817}{3169299117646386426073600} a^{7} - \frac{19682001121111263036013}{6338598235292772852147200} a^{6} - \frac{11815914109167271847695}{253543929411710914085888} a^{5} - \frac{610843031619289006302271}{6338598235292772852147200} a^{4} + \frac{432093852787106534977819}{3169299117646386426073600} a^{3} + \frac{200147988295316210133799}{3169299117646386426073600} a^{2} - \frac{23501686319189537584923}{3169299117646386426073600} a - \frac{1147283342813890690454377}{3169299117646386426073600}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{38064}$, which has order $1218048$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 226303.78002303242 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-798}) \), \(\Q(\sqrt{-399}) \), \(\Q(\sqrt{2}) \), 3.3.17689.2, \(\Q(\sqrt{2}, \sqrt{-399})\), 6.0.575296762424832.2, 6.0.1123626489111.2, 6.6.160205169152.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.1 | $x^{2} + 14$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $19$ | 19.12.10.3 | $x^{12} - 19 x^{6} + 5776$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |