Normalized defining polynomial
\( x^{12} - x^{11} - 3 x^{10} + 7 x^{9} + 5 x^{8} - 33 x^{7} + 13 x^{6} - 132 x^{5} + 80 x^{4} + 448 x^{3} - 768 x^{2} - 1024 x + 4096 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3217569633140625=3^{6}\cdot 5^{6}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(105=3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{105}(1,·)$, $\chi_{105}(104,·)$, $\chi_{105}(44,·)$, $\chi_{105}(74,·)$, $\chi_{105}(76,·)$, $\chi_{105}(46,·)$, $\chi_{105}(29,·)$, $\chi_{105}(16,·)$, $\chi_{105}(89,·)$, $\chi_{105}(59,·)$, $\chi_{105}(61,·)$, $\chi_{105}(31,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{52} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{6}{13}$, $\frac{1}{208} a^{8} - \frac{1}{208} a^{7} + \frac{1}{16} a^{6} + \frac{3}{16} a^{5} - \frac{7}{16} a^{4} - \frac{5}{16} a^{3} + \frac{1}{16} a^{2} + \frac{19}{52} a + \frac{5}{13}$, $\frac{1}{832} a^{9} - \frac{1}{832} a^{8} - \frac{3}{832} a^{7} - \frac{29}{64} a^{6} + \frac{25}{64} a^{5} + \frac{27}{64} a^{4} + \frac{1}{64} a^{3} - \frac{33}{208} a^{2} + \frac{5}{52} a - \frac{6}{13}$, $\frac{1}{3328} a^{10} - \frac{1}{3328} a^{9} - \frac{3}{3328} a^{8} + \frac{7}{3328} a^{7} - \frac{39}{256} a^{6} - \frac{101}{256} a^{5} + \frac{1}{256} a^{4} - \frac{33}{832} a^{3} + \frac{5}{208} a^{2} + \frac{7}{52} a - \frac{3}{13}$, $\frac{1}{13312} a^{11} - \frac{1}{13312} a^{10} - \frac{3}{13312} a^{9} + \frac{7}{13312} a^{8} + \frac{5}{13312} a^{7} + \frac{155}{1024} a^{6} + \frac{1}{1024} a^{5} - \frac{33}{3328} a^{4} + \frac{5}{832} a^{3} + \frac{7}{208} a^{2} - \frac{3}{52} a - \frac{1}{13}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3}{832} a^{10} + \frac{305}{832} a^{3} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1378.58167933 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-15}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{-7}, \sqrt{-15})\), \(\Q(\zeta_{7})\), 6.6.56723625.1, 6.0.8103375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{4}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |