Normalized defining polynomial
\( x^{12} - x^{11} + 227 x^{10} - 309 x^{9} + 22502 x^{8} - 33994 x^{7} + 1245613 x^{6} - 1770344 x^{5} + \cdots + 5341899473 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(32162234804625003419392457\) \(\medspace = 7^{8}\cdot 17^{9}\cdot 19^{6}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(133.54\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $7^{2/3}17^{3/4}19^{1/2}\approx 133.54024997365337$ | ||
Ramified primes: | \(7\), \(17\), \(19\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(2261=7\cdot 17\cdot 19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{2261}(1920,·)$, $\chi_{2261}(1,·)$, $\chi_{2261}(2146,·)$, $\chi_{2261}(324,·)$, $\chi_{2261}(778,·)$, $\chi_{2261}(1101,·)$, $\chi_{2261}(970,·)$, $\chi_{2261}(305,·)$, $\chi_{2261}(1747,·)$, $\chi_{2261}(1177,·)$, $\chi_{2261}(1500,·)$, $\chi_{2261}(1597,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.1773593.2$^{2}$, 12.0.32162234804625003419392457.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}$, $\frac{1}{2}a^{8}-\frac{1}{2}a$, $\frac{1}{64}a^{9}-\frac{15}{64}a^{8}-\frac{5}{32}a^{7}+\frac{13}{64}a^{6}+\frac{27}{64}a^{5}+\frac{23}{64}a^{4}+\frac{7}{64}a^{3}+\frac{5}{16}a^{2}-\frac{7}{32}a-\frac{29}{64}$, $\frac{1}{64}a^{10}-\frac{11}{64}a^{8}-\frac{9}{64}a^{7}-\frac{1}{32}a^{6}+\frac{3}{16}a^{5}+\frac{29}{64}a^{3}-\frac{1}{32}a^{2}+\frac{17}{64}a-\frac{19}{64}$, $\frac{1}{42\!\cdots\!76}a^{11}+\frac{32\!\cdots\!55}{42\!\cdots\!76}a^{10}-\frac{31\!\cdots\!47}{52\!\cdots\!72}a^{9}+\frac{10\!\cdots\!09}{42\!\cdots\!76}a^{8}+\frac{90\!\cdots\!89}{42\!\cdots\!76}a^{7}+\frac{23\!\cdots\!93}{42\!\cdots\!76}a^{6}+\frac{61\!\cdots\!69}{42\!\cdots\!76}a^{5}-\frac{96\!\cdots\!71}{21\!\cdots\!88}a^{4}+\frac{70\!\cdots\!09}{21\!\cdots\!88}a^{3}+\frac{12\!\cdots\!27}{42\!\cdots\!76}a^{2}-\frac{99\!\cdots\!09}{21\!\cdots\!88}a-\frac{10\!\cdots\!55}{52\!\cdots\!72}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}\times C_{19058}$, which has order $38116$ (assuming GRH)
Relative class number: $38116$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{19\!\cdots\!63}{65\!\cdots\!09}a^{11}-\frac{16\!\cdots\!34}{65\!\cdots\!09}a^{10}+\frac{38\!\cdots\!88}{65\!\cdots\!09}a^{9}-\frac{31\!\cdots\!00}{65\!\cdots\!09}a^{8}+\frac{33\!\cdots\!24}{65\!\cdots\!09}a^{7}-\frac{25\!\cdots\!05}{65\!\cdots\!09}a^{6}+\frac{16\!\cdots\!17}{65\!\cdots\!09}a^{5}-\frac{10\!\cdots\!03}{65\!\cdots\!09}a^{4}+\frac{42\!\cdots\!63}{65\!\cdots\!09}a^{3}-\frac{21\!\cdots\!60}{65\!\cdots\!09}a^{2}+\frac{45\!\cdots\!79}{65\!\cdots\!09}a-\frac{16\!\cdots\!36}{65\!\cdots\!09}$, $\frac{65\!\cdots\!80}{65\!\cdots\!09}a^{11}+\frac{69\!\cdots\!18}{65\!\cdots\!09}a^{10}+\frac{17\!\cdots\!38}{65\!\cdots\!09}a^{9}+\frac{11\!\cdots\!29}{65\!\cdots\!09}a^{8}+\frac{16\!\cdots\!38}{65\!\cdots\!09}a^{7}+\frac{75\!\cdots\!12}{65\!\cdots\!09}a^{6}+\frac{74\!\cdots\!74}{65\!\cdots\!09}a^{5}+\frac{26\!\cdots\!33}{65\!\cdots\!09}a^{4}+\frac{18\!\cdots\!80}{65\!\cdots\!09}a^{3}+\frac{52\!\cdots\!98}{65\!\cdots\!09}a^{2}+\frac{18\!\cdots\!42}{65\!\cdots\!09}a+\frac{41\!\cdots\!19}{65\!\cdots\!09}$, $\frac{10\!\cdots\!71}{42\!\cdots\!76}a^{11}-\frac{16\!\cdots\!35}{21\!\cdots\!88}a^{10}+\frac{95\!\cdots\!73}{21\!\cdots\!88}a^{9}-\frac{31\!\cdots\!19}{21\!\cdots\!88}a^{8}+\frac{99\!\cdots\!37}{21\!\cdots\!88}a^{7}-\frac{49\!\cdots\!37}{42\!\cdots\!76}a^{6}+\frac{11\!\cdots\!29}{42\!\cdots\!76}a^{5}-\frac{50\!\cdots\!21}{10\!\cdots\!44}a^{4}+\frac{34\!\cdots\!49}{42\!\cdots\!76}a^{3}-\frac{42\!\cdots\!69}{42\!\cdots\!76}a^{2}+\frac{40\!\cdots\!47}{42\!\cdots\!76}a-\frac{35\!\cdots\!73}{42\!\cdots\!76}$, $\frac{31\!\cdots\!43}{42\!\cdots\!76}a^{11}-\frac{17\!\cdots\!71}{21\!\cdots\!88}a^{10}+\frac{32\!\cdots\!21}{21\!\cdots\!88}a^{9}-\frac{34\!\cdots\!63}{21\!\cdots\!88}a^{8}+\frac{30\!\cdots\!37}{21\!\cdots\!88}a^{7}-\frac{55\!\cdots\!21}{42\!\cdots\!76}a^{6}+\frac{31\!\cdots\!89}{42\!\cdots\!76}a^{5}-\frac{58\!\cdots\!13}{10\!\cdots\!44}a^{4}+\frac{85\!\cdots\!21}{42\!\cdots\!76}a^{3}-\frac{49\!\cdots\!65}{42\!\cdots\!76}a^{2}+\frac{92\!\cdots\!79}{42\!\cdots\!76}a-\frac{40\!\cdots\!45}{42\!\cdots\!76}$, $\frac{15\!\cdots\!73}{10\!\cdots\!44}a^{11}-\frac{22\!\cdots\!73}{42\!\cdots\!76}a^{10}+\frac{75\!\cdots\!71}{42\!\cdots\!76}a^{9}-\frac{20\!\cdots\!07}{21\!\cdots\!88}a^{8}+\frac{59\!\cdots\!43}{42\!\cdots\!76}a^{7}-\frac{30\!\cdots\!35}{42\!\cdots\!76}a^{6}+\frac{30\!\cdots\!85}{42\!\cdots\!76}a^{5}-\frac{12\!\cdots\!43}{42\!\cdots\!76}a^{4}+\frac{25\!\cdots\!75}{13\!\cdots\!18}a^{3}-\frac{12\!\cdots\!59}{21\!\cdots\!88}a^{2}+\frac{82\!\cdots\!69}{42\!\cdots\!76}a-\frac{54\!\cdots\!33}{10\!\cdots\!44}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1059.54542703 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 1059.54542703 \cdot 38116}{2\cdot\sqrt{32162234804625003419392457}}\cr\approx \mathstrut & 0.219080137617 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), \(\Q(\zeta_{7})^+\), 4.0.1773593.2, 6.6.11796113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.3.0.1}{3} }^{4}$ | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.12.0.1}{12} }$ | R | ${\href{/padicField/11.12.0.1}{12} }$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | R | R | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.4.0.1}{4} }^{3}$ | ${\href{/padicField/31.12.0.1}{12} }$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.4.0.1}{4} }^{3}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.3.0.1}{3} }^{4}$ | ${\href{/padicField/53.3.0.1}{3} }^{4}$ | ${\href{/padicField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(7\) | 7.12.8.1 | $x^{12} + 15 x^{10} + 40 x^{9} + 84 x^{8} + 120 x^{7} + 53 x^{6} + 414 x^{5} - 1293 x^{4} - 1830 x^{3} + 10968 x^{2} - 13836 x + 12004$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
\(19\) | 19.6.3.1 | $x^{6} + 1444 x^{2} - 116603$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
19.6.3.1 | $x^{6} + 1444 x^{2} - 116603$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |