Properties

Label 12.0.31831150725...1968.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{12}\cdot 3^{6}\cdot 13^{11}\cdot 29^{6}$
Root discriminant $195.84$
Ramified primes $2, 3, 13, 29$
Class number $2597920$ (GRH)
Class group $[2, 2, 2, 2, 162370]$ (GRH)
Galois group $C_{12}$ (as 12T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5637140613117, 0, 453563037837, 0, 10426736502, 0, 102726468, 0, 491985, 0, 1131, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 1131*x^10 + 491985*x^8 + 102726468*x^6 + 10426736502*x^4 + 453563037837*x^2 + 5637140613117)
 
gp: K = bnfinit(x^12 + 1131*x^10 + 491985*x^8 + 102726468*x^6 + 10426736502*x^4 + 453563037837*x^2 + 5637140613117, 1)
 

Normalized defining polynomial

\( x^{12} + 1131 x^{10} + 491985 x^{8} + 102726468 x^{6} + 10426736502 x^{4} + 453563037837 x^{2} + 5637140613117 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3183115072573672681403731968=2^{12}\cdot 3^{6}\cdot 13^{11}\cdot 29^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $195.84$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4524=2^{2}\cdot 3\cdot 13\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{4524}(1,·)$, $\chi_{4524}(3479,·)$, $\chi_{4524}(2785,·)$, $\chi_{4524}(2089,·)$, $\chi_{4524}(2087,·)$, $\chi_{4524}(1741,·)$, $\chi_{4524}(4175,·)$, $\chi_{4524}(4177,·)$, $\chi_{4524}(3827,·)$, $\chi_{4524}(695,·)$, $\chi_{4524}(3481,·)$, $\chi_{4524}(3131,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{87} a^{2}$, $\frac{1}{87} a^{3}$, $\frac{1}{7569} a^{4}$, $\frac{1}{7569} a^{5}$, $\frac{1}{658503} a^{6}$, $\frac{1}{658503} a^{7}$, $\frac{1}{57289761} a^{8}$, $\frac{1}{57289761} a^{9}$, $\frac{1}{4984209207} a^{10}$, $\frac{1}{4984209207} a^{11}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{162370}$, which has order $2597920$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{57289761} a^{8} + \frac{1}{73167} a^{6} + \frac{3}{841} a^{4} + \frac{1}{3} a^{2} + 6 \),  \( \frac{1}{57289761} a^{8} + \frac{8}{658503} a^{6} + \frac{20}{7569} a^{4} + \frac{16}{87} a^{2} + 2 \),  \( \frac{1}{658503} a^{6} + \frac{2}{2523} a^{4} + \frac{3}{29} a^{2} + 2 \),  \( \frac{1}{57289761} a^{8} + \frac{1}{73167} a^{6} + \frac{26}{7569} a^{4} + \frac{25}{87} a^{2} + 4 \),  \( \frac{1}{658503} a^{6} + \frac{2}{2523} a^{4} + \frac{3}{29} a^{2} + 3 \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 120.78403136265631 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{12}$ (as 12T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 12
The 12 conjugacy class representatives for $C_{12}$
Character table for $C_{12}$

Intermediate fields

\(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.266065488.4, \(\Q(\zeta_{13})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/7.12.0.1}{12} }$ ${\href{/LocalNumberField/11.12.0.1}{12} }$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.12.0.1}{12} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/37.12.0.1}{12} }$ ${\href{/LocalNumberField/41.12.0.1}{12} }$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.12.0.1}{12} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.12.25$x^{12} - 78 x^{10} - 1621 x^{8} + 460 x^{6} - 1977 x^{4} + 866 x^{2} + 749$$2$$6$$12$$C_{12}$$[2]^{6}$
$3$3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.2$x^{6} - 9 x^{2} + 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$13$13.12.11.4$x^{12} - 832$$12$$1$$11$$C_{12}$$[\ ]_{12}$
$29$29.6.3.2$x^{6} - 841 x^{2} + 73167$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
29.6.3.2$x^{6} - 841 x^{2} + 73167$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$