Normalized defining polynomial
\( x^{12} + 1092 x^{10} + 247338 x^{8} + 22407840 x^{6} + 889945056 x^{4} + 13314502656 x^{2} + 17178086016 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3170112398857312997665091547561984=2^{33}\cdot 3^{6}\cdot 7^{10}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $619.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4368=2^{4}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4368}(1,·)$, $\chi_{4368}(2309,·)$, $\chi_{4368}(289,·)$, $\chi_{4368}(2957,·)$, $\chi_{4368}(2813,·)$, $\chi_{4368}(529,·)$, $\chi_{4368}(3365,·)$, $\chi_{4368}(3481,·)$, $\chi_{4368}(2521,·)$, $\chi_{4368}(509,·)$, $\chi_{4368}(1369,·)$, $\chi_{4368}(2789,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{18} a^{4}$, $\frac{1}{18} a^{5}$, $\frac{1}{756} a^{6} - \frac{1}{6} a^{2}$, $\frac{1}{1512} a^{7} - \frac{1}{12} a^{3}$, $\frac{1}{72576} a^{8} - \frac{1}{2016} a^{6} + \frac{5}{192} a^{4} + \frac{1}{8} a^{2} - \frac{1}{8}$, $\frac{1}{2467584} a^{9} - \frac{1}{68544} a^{7} - \frac{1}{1152} a^{5} + \frac{83}{816} a^{3} - \frac{73}{272} a$, $\frac{1}{259530313738752} a^{10} - \frac{15629905}{21627526144896} a^{8} - \frac{395265719}{848138280192} a^{6} - \frac{223517939}{42911758224} a^{4} + \frac{1249389317}{9535946272} a^{2} + \frac{12412427}{70117252}$, $\frac{1}{259530313738752} a^{11} + \frac{5653}{64367637336} a^{9} + \frac{798575179}{4806116921088} a^{7} - \frac{1192070077}{171647032896} a^{5} - \frac{784010991}{9535946272} a^{3} - \frac{857617331}{2383986568} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{709644}$, which has order $11354304$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 280406.634104081 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{26}) \), 3.3.8281.1, 4.0.1984260096.4, 6.6.456434940416.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{12}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.10 | $x^{4} + 8 x + 6$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.10 | $x^{4} + 8 x + 6$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.10 | $x^{4} + 8 x + 6$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.10.4 | $x^{12} - 7 x^{6} + 147$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $13$ | 13.12.11.11 | $x^{12} + 6656$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |