Normalized defining polynomial
\( x^{12} + 1092 x^{10} + 384930 x^{8} + 54427464 x^{6} + 2733815448 x^{4} + 23518325376 x^{2} + 449513064 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3170112398857312997665091547561984=2^{33}\cdot 3^{6}\cdot 7^{10}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $619.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4368=2^{4}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4368}(1,·)$, $\chi_{4368}(2021,·)$, $\chi_{4368}(3649,·)$, $\chi_{4368}(361,·)$, $\chi_{4368}(4301,·)$, $\chi_{4368}(125,·)$, $\chi_{4368}(1537,·)$, $\chi_{4368}(629,·)$, $\chi_{4368}(2521,·)$, $\chi_{4368}(121,·)$, $\chi_{4368}(1853,·)$, $\chi_{4368}(1445,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{18} a^{4}$, $\frac{1}{18} a^{5}$, $\frac{1}{378} a^{6}$, $\frac{1}{4158} a^{7} - \frac{1}{198} a^{5} - \frac{1}{11} a^{3} - \frac{5}{11} a$, $\frac{1}{1122660} a^{8} + \frac{4}{31185} a^{6} + \frac{1}{55} a^{4} + \frac{23}{495} a^{2} - \frac{22}{45}$, $\frac{1}{1122660} a^{9} - \frac{1}{8910} a^{7} + \frac{23}{990} a^{5} + \frac{68}{495} a^{3} - \frac{17}{495} a$, $\frac{1}{1141121284865100} a^{10} - \frac{8199377}{54339108803100} a^{8} - \frac{2865239173}{21131875645650} a^{6} - \frac{6508951081}{503139896325} a^{4} + \frac{11688733643}{100627979265} a^{2} + \frac{6075646634}{15246663525}$, $\frac{1}{1141121284865100} a^{11} - \frac{8199377}{54339108803100} a^{9} + \frac{1108491001}{10565937822825} a^{7} - \frac{18100123337}{1006279792650} a^{5} + \frac{2540735528}{100627979265} a^{3} - \frac{9401204651}{167713298775} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{814}\times C_{4884}$, which has order $31804608$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67617.0856763039 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{26}) \), 3.3.8281.2, 4.0.1984260096.2, 6.6.456434940416.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.33.340 | $x^{12} - 8 x^{10} - 28 x^{8} - 8 x^{6} + 20 x^{4} + 16 x^{2} - 24$ | $4$ | $3$ | $33$ | $C_{12}$ | $[3, 4]^{3}$ |
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.12.10.6 | $x^{12} - 217 x^{6} + 11907$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $13$ | 13.12.11.8 | $x^{12} + 104$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |