Normalized defining polynomial
\( x^{12} + 9 x^{10} - 4 x^{9} + 183 x^{8} + 36 x^{7} + 2281 x^{6} + 1200 x^{5} + 17949 x^{4} + 5580 x^{3} + 77817 x^{2} + 5118 x + 156329 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31643295525096890625=3^{16}\cdot 5^{6}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(855=3^{2}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{855}(1,·)$, $\chi_{855}(514,·)$, $\chi_{855}(379,·)$, $\chi_{855}(229,·)$, $\chi_{855}(721,·)$, $\chi_{855}(436,·)$, $\chi_{855}(286,·)$, $\chi_{855}(151,·)$, $\chi_{855}(664,·)$, $\chi_{855}(571,·)$, $\chi_{855}(94,·)$, $\chi_{855}(799,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{36} a^{9} - \frac{1}{6} a^{7} - \frac{1}{12} a^{6} + \frac{1}{12} a^{5} - \frac{5}{12} a^{4} - \frac{17}{36} a^{3} + \frac{1}{6} a^{2} - \frac{1}{4} a - \frac{17}{36}$, $\frac{1}{539172} a^{10} - \frac{851}{134793} a^{9} - \frac{7487}{44931} a^{8} + \frac{907}{59908} a^{7} - \frac{12133}{59908} a^{6} - \frac{66049}{179724} a^{5} - \frac{133493}{539172} a^{4} + \frac{1901}{269586} a^{3} - \frac{78427}{179724} a^{2} - \frac{37979}{539172} a + \frac{82961}{269586}$, $\frac{1}{9454492628604} a^{11} + \frac{1874009}{4727246314302} a^{10} - \frac{39546035107}{4727246314302} a^{9} + \frac{207276782795}{1050499180956} a^{8} + \frac{488867021281}{3151497542868} a^{7} + \frac{7569332885}{185382208404} a^{6} - \frac{3951773005763}{9454492628604} a^{5} + \frac{246000987154}{2363623157151} a^{4} - \frac{98404806737}{9454492628604} a^{3} - \frac{4451751483167}{9454492628604} a^{2} - \frac{623921877503}{2363623157151} a + \frac{1797585913805}{4727246314302}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{12}$, which has order $192$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.000834787 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-95}) \), \(\Q(\sqrt{-19}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{5}, \sqrt{-19})\), 6.6.820125.1, 6.0.5625237375.5, 6.0.45001899.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |