Normalized defining polynomial
\( x^{12} + 312 x^{10} - 52 x^{9} + 45123 x^{8} - 6162 x^{7} + 2844842 x^{6} - 1148862 x^{5} + 37302525 x^{4} - 15701114 x^{3} + 1693748589 x^{2} + 4707053910 x + 17866171479 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(315992590210501847764992000000=2^{18}\cdot 3^{16}\cdot 5^{6}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $287.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4680=2^{3}\cdot 3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4680}(1921,·)$, $\chi_{4680}(3109,·)$, $\chi_{4680}(1,·)$, $\chi_{4680}(3721,·)$, $\chi_{4680}(109,·)$, $\chi_{4680}(2401,·)$, $\chi_{4680}(3469,·)$, $\chi_{4680}(1681,·)$, $\chi_{4680}(709,·)$, $\chi_{4680}(4309,·)$, $\chi_{4680}(2521,·)$, $\chi_{4680}(3349,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13} a^{6}$, $\frac{1}{13} a^{7}$, $\frac{1}{39} a^{8} - \frac{1}{39} a^{7} + \frac{1}{39} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{39} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{47541} a^{10} - \frac{32}{47541} a^{9} - \frac{2}{689} a^{8} - \frac{295}{15847} a^{7} - \frac{359}{15847} a^{6} + \frac{511}{1219} a^{5} - \frac{1792}{3657} a^{4} - \frac{1390}{3657} a^{3} + \frac{110}{1219} a^{2} + \frac{534}{1219} a + \frac{103}{1219}$, $\frac{1}{41456366853239948093778709589467778530461} a^{11} + \frac{22580143057616757740232460804700530}{3188951296403072930290669968420598348497} a^{10} + \frac{408074067331654014413584023515591562370}{41456366853239948093778709589467778530461} a^{9} - \frac{54459096196458870135656815374382295327}{13818788951079982697926236529822592843487} a^{8} + \frac{5005162837705336064585822427968540479}{13818788951079982697926236529822592843487} a^{7} - \frac{255493715287176013532950082553399318509}{13818788951079982697926236529822592843487} a^{6} - \frac{552129810504670456157947299692883118312}{3188951296403072930290669968420598348497} a^{5} - \frac{1100107540675814872847870349700309185175}{3188951296403072930290669968420598348497} a^{4} + \frac{36722237062821319207323284981962403452}{138650056365350996969159563844373841239} a^{3} - \frac{155700377566824048236626130105820480206}{354327921822563658921185552046733149833} a^{2} + \frac{63194705146537572136339194748859176901}{1062983765467690976763556656140199449499} a - \frac{481936916475540565193018251695240468277}{1062983765467690976763556656140199449499}$
Class group and class number
$C_{3}\times C_{6}\times C_{144534}$, which has order $2601612$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9116.238746847283 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.13689.2, 4.0.3515200.1, 6.6.2436053373.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.28 | $x^{12} - 52 x^{10} + 1100 x^{8} - 12000 x^{6} - 61072 x^{4} + 62144 x^{2} - 62144$ | $2$ | $6$ | $18$ | $C_{12}$ | $[3]^{6}$ |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $5$ | 5.12.6.2 | $x^{12} - 3125 x^{2} + 31250$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.11.2 | $x^{12} - 52$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |