Normalized defining polynomial
\( x^{12} + 312 x^{10} - 52 x^{9} + 45123 x^{8} + 35256 x^{7} + 2843672 x^{6} + 794976 x^{5} + 38233377 x^{4} + 26701324 x^{3} + 1641488550 x^{2} - 2628689544 x + 17237397684 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(315992590210501847764992000000=2^{18}\cdot 3^{16}\cdot 5^{6}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $287.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4680=2^{3}\cdot 3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4680}(1,·)$, $\chi_{4680}(2521,·)$, $\chi_{4680}(2749,·)$, $\chi_{4680}(841,·)$, $\chi_{4680}(109,·)$, $\chi_{4680}(4669,·)$, $\chi_{4680}(121,·)$, $\chi_{4680}(3349,·)$, $\chi_{4680}(601,·)$, $\chi_{4680}(3481,·)$, $\chi_{4680}(349,·)$, $\chi_{4680}(3829,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{26} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{26} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{156} a^{8} + \frac{1}{78} a^{7} + \frac{1}{156} a^{6} + \frac{1}{6} a^{5} - \frac{5}{12} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{8268} a^{9} - \frac{3}{2756} a^{8} + \frac{19}{2756} a^{7} + \frac{29}{2756} a^{6} - \frac{91}{212} a^{5} - \frac{39}{212} a^{4} + \frac{145}{318} a^{3} - \frac{25}{53} a^{2} - \frac{5}{53} a + \frac{13}{53}$, $\frac{1}{8268} a^{10} - \frac{2}{689} a^{8} - \frac{3}{689} a^{7} + \frac{8}{689} a^{6} - \frac{5}{106} a^{5} + \frac{191}{636} a^{4} - \frac{39}{106} a^{3} + \frac{17}{106} a^{2} + \frac{21}{53} a + \frac{11}{53}$, $\frac{1}{1195909492017567713344650674049834756756} a^{11} + \frac{2400878947725003724337313180961963}{298977373004391928336162668512458689189} a^{10} - \frac{68451733988165020900448014220817365}{1195909492017567713344650674049834756756} a^{9} + \frac{391685994336774705501242032416619071}{132878832446396412593850074894426084084} a^{8} - \frac{2105686117663753575925674695778746785}{398636497339189237781550224683278252252} a^{7} - \frac{255371257669050432748620221565123811}{132878832446396412593850074894426084084} a^{6} - \frac{8624589487587835816703195906883248117}{45996518923752604359409641309609029106} a^{5} - \frac{38035941437585139447160695452070180703}{91993037847505208718819282619218058212} a^{4} + \frac{187667883945346206597105725458617667}{45996518923752604359409641309609029106} a^{3} + \frac{339086007547893896410709855184580226}{2555362162430700242189424517200501617} a^{2} - \frac{3481782106309055157901504374640282795}{7666086487292100726568273551601504851} a - \frac{2522325162971943330907398078833167666}{7666086487292100726568273551601504851}$
Class group and class number
$C_{2}\times C_{6}\times C_{6}\times C_{28254}$, which has order $2034288$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16557.868316895623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.13689.1, 4.0.3515200.1, 6.6.2436053373.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| $3$ | 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| $5$ | 5.12.6.2 | $x^{12} - 3125 x^{2} + 31250$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.11.6 | $x^{12} - 13312$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |