Normalized defining polynomial
\( x^{12} - 6 x^{11} + 75 x^{10} - 320 x^{9} + 2751 x^{8} - 9150 x^{7} + 61213 x^{6} - 152892 x^{5} + 862788 x^{4} - 1480824 x^{3} + 7474092 x^{2} - 6757728 x + 30496904 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(312360518047666176000000=2^{18}\cdot 3^{16}\cdot 5^{6}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3960=2^{3}\cdot 3^{2}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3960}(769,·)$, $\chi_{3960}(3301,·)$, $\chi_{3960}(1,·)$, $\chi_{3960}(1321,·)$, $\chi_{3960}(109,·)$, $\chi_{3960}(2749,·)$, $\chi_{3960}(3409,·)$, $\chi_{3960}(661,·)$, $\chi_{3960}(2641,·)$, $\chi_{3960}(2089,·)$, $\chi_{3960}(1981,·)$, $\chi_{3960}(1429,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{68} a^{8} - \frac{1}{17} a^{7} + \frac{3}{34} a^{6} - \frac{1}{17} a^{5} + \frac{9}{68} a^{4} - \frac{4}{17} a^{3} + \frac{6}{17} a^{2} - \frac{4}{17} a + \frac{5}{17}$, $\frac{1}{7548} a^{9} + \frac{1}{148} a^{8} + \frac{55}{1258} a^{7} - \frac{263}{1258} a^{6} + \frac{315}{2516} a^{5} - \frac{475}{2516} a^{4} - \frac{299}{1887} a^{3} - \frac{84}{629} a^{2} + \frac{189}{629} a + \frac{479}{1887}$, $\frac{1}{14145487908} a^{10} - \frac{5}{14145487908} a^{9} - \frac{2112825}{2357581318} a^{8} + \frac{8451305}{2357581318} a^{7} + \frac{674527709}{4715162636} a^{6} + \frac{274839049}{4715162636} a^{5} - \frac{424547024}{3536371977} a^{4} + \frac{1699125682}{3536371977} a^{3} - \frac{1072803475}{2357581318} a^{2} - \frac{386906233}{3536371977} a + \frac{74269028}{3536371977}$, $\frac{1}{43808576051076} a^{11} + \frac{1543}{43808576051076} a^{10} + \frac{945925767}{14602858683692} a^{9} + \frac{5680815549}{858991687276} a^{8} + \frac{437744827307}{14602858683692} a^{7} - \frac{72654118217}{858991687276} a^{6} - \frac{9305119245893}{43808576051076} a^{5} + \frac{7069667677141}{43808576051076} a^{4} - \frac{898482262429}{7301429341846} a^{3} - \frac{3425055643750}{10952144012769} a^{2} - \frac{2456818065340}{10952144012769} a - \frac{1689951079965}{3650714670923}$
Class group and class number
$C_{7}\times C_{7}\times C_{504}$, which has order $24696$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 481.70037561485367 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-55}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{2}, \sqrt{-55})\), 6.0.558892224000.14, 6.6.3359232.1, 6.0.1091586375.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ |
| 3.6.8.3 | $x^{6} + 18 x^{2} + 9$ | $3$ | $2$ | $8$ | $C_6$ | $[2]^{2}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $11$ | 11.12.6.1 | $x^{12} + 242 x^{8} + 21296 x^{6} + 14641 x^{4} + 1932612 x^{2} + 113379904$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |