Normalized defining polynomial
\( x^{12} - 2 x^{11} + 243 x^{10} - 402 x^{9} + 25439 x^{8} - 33658 x^{7} + 1465592 x^{6} - 1462780 x^{5} + 48950518 x^{4} - 32947364 x^{3} + 898179909 x^{2} - 307522146 x + 7073009371 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3099482676998661139070976=2^{18}\cdot 3^{6}\cdot 7^{6}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $109.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2184=2^{3}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2184}(1,·)$, $\chi_{2184}(1091,·)$, $\chi_{2184}(673,·)$, $\chi_{2184}(841,·)$, $\chi_{2184}(1427,·)$, $\chi_{2184}(337,·)$, $\chi_{2184}(419,·)$, $\chi_{2184}(251,·)$, $\chi_{2184}(755,·)$, $\chi_{2184}(1681,·)$, $\chi_{2184}(1849,·)$, $\chi_{2184}(1595,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3497256031134335812654168819197325} a^{11} - \frac{1180825408100155775930106254623708}{3497256031134335812654168819197325} a^{10} + \frac{567841892639438538298025212531891}{3497256031134335812654168819197325} a^{9} + \frac{452985615718459929546152220796352}{3497256031134335812654168819197325} a^{8} + \frac{960254273750292950097259303117552}{3497256031134335812654168819197325} a^{7} + \frac{219396774353327472423505325035631}{699451206226867162530833763839465} a^{6} + \frac{478056971400256715097914342329687}{3497256031134335812654168819197325} a^{5} - \frac{1474410517119307104918168308869802}{3497256031134335812654168819197325} a^{4} + \frac{72856097591680359679204247402391}{699451206226867162530833763839465} a^{3} + \frac{114078035521502504788225365143106}{3497256031134335812654168819197325} a^{2} - \frac{1640111014013302228952688380004627}{3497256031134335812654168819197325} a + \frac{902611873383038120018312011796916}{3497256031134335812654168819197325}$
Class group and class number
$C_{2}\times C_{30}\times C_{2340}$, which has order $140400$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.78403136265631 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-546}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-42}) \), 3.3.169.1, \(\Q(\sqrt{13}, \sqrt{-42})\), 6.0.1760534770176.3, \(\Q(\zeta_{13})^+\), 6.0.135425751552.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.2 | $x^{6} - 13$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |