Normalized defining polynomial
\( x^{12} + 930 x^{10} + 306900 x^{8} + 46872000 x^{6} + 3487276800 x^{4} + 119563776000 x^{2} + 1434765312000 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(305924618859010011648000000000=2^{18}\cdot 3^{6}\cdot 5^{9}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $286.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3720=2^{3}\cdot 3\cdot 5\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3720}(1,·)$, $\chi_{3720}(3653,·)$, $\chi_{3720}(769,·)$, $\chi_{3720}(3533,·)$, $\chi_{3720}(557,·)$, $\chi_{3720}(3601,·)$, $\chi_{3720}(1489,·)$, $\chi_{3720}(533,·)$, $\chi_{3720}(1369,·)$, $\chi_{3720}(3001,·)$, $\chi_{3720}(1277,·)$, $\chi_{3720}(677,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{180} a^{4}$, $\frac{1}{360} a^{5} - \frac{1}{12} a^{3} - \frac{1}{2} a$, $\frac{1}{133920} a^{6} + \frac{1}{720} a^{4} - \frac{1}{24} a^{2}$, $\frac{1}{267840} a^{7} + \frac{1}{1440} a^{5} + \frac{1}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{128563200} a^{8} + \frac{1}{1428480} a^{6} - \frac{7}{7680} a^{4} + \frac{5}{192} a^{2} - \frac{1}{8}$, $\frac{1}{257126400} a^{9} + \frac{1}{2856960} a^{7} - \frac{7}{15360} a^{5} + \frac{5}{384} a^{3} + \frac{7}{16} a$, $\frac{1}{3085516800} a^{10} - \frac{1}{514252800} a^{8} - \frac{59}{17141760} a^{6} + \frac{13}{23040} a^{4} - \frac{5}{192} a^{2} - \frac{1}{2}$, $\frac{1}{6171033600} a^{11} - \frac{1}{1028505600} a^{9} - \frac{59}{34283520} a^{7} + \frac{13}{46080} a^{5} - \frac{5}{384} a^{3} - \frac{1}{4} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{59060}$, which has order $1889920$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4882.160216514567 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 3.3.961.1, 4.0.69192000.5, 6.6.115440125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | R | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| 2.4.6.3 | $x^{4} + 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ | |
| $3$ | 3.12.6.1 | $x^{12} - 243 x^{2} + 1458$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $31$ | 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 31.6.5.5 | $x^{6} + 10633$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |