Normalized defining polynomial
\( x^{12} - 4 x^{11} + 29 x^{10} - 84 x^{9} + 461 x^{8} - 976 x^{7} + 4353 x^{6} - 6772 x^{5} + 27208 x^{4} - 25046 x^{3} + 110223 x^{2} - 37447 x + 213487 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30484209987928082169=3^{6}\cdot 7^{10}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(483=3\cdot 7\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{483}(1,·)$, $\chi_{483}(482,·)$, $\chi_{483}(68,·)$, $\chi_{483}(298,·)$, $\chi_{483}(461,·)$, $\chi_{483}(206,·)$, $\chi_{483}(47,·)$, $\chi_{483}(436,·)$, $\chi_{483}(277,·)$, $\chi_{483}(22,·)$, $\chi_{483}(185,·)$, $\chi_{483}(415,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{41} a^{10} - \frac{12}{41} a^{9} - \frac{13}{41} a^{8} - \frac{5}{41} a^{7} - \frac{1}{41} a^{6} + \frac{9}{41} a^{5} - \frac{9}{41} a^{4} + \frac{12}{41} a^{3} - \frac{18}{41} a^{2} + \frac{10}{41} a$, $\frac{1}{108256666399667565163} a^{11} - \frac{796763704305912062}{108256666399667565163} a^{10} + \frac{5330350005907312499}{108256666399667565163} a^{9} + \frac{36436298911572044714}{108256666399667565163} a^{8} + \frac{38158096991979667281}{108256666399667565163} a^{7} + \frac{31150650665589635112}{108256666399667565163} a^{6} - \frac{51612432065875835360}{108256666399667565163} a^{5} - \frac{10305901420836746729}{108256666399667565163} a^{4} + \frac{24521177445680892148}{108256666399667565163} a^{3} - \frac{51927535761764859783}{108256666399667565163} a^{2} - \frac{52190521113915500995}{108256666399667565163} a - \frac{273457044334393182}{2640406497552867443}$
Class group and class number
$C_{234}$, which has order $234$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140.798796005 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-483}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{21}, \sqrt{-23})\), \(\Q(\zeta_{21})^+\), 6.0.29212967.1, 6.0.5521250763.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $23$ | 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |