Normalized defining polynomial
\( x^{12} + 60 x^{10} + 2683 x^{8} + 80840 x^{6} + 1655491 x^{4} + 20639500 x^{2} + 122655625 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2987012625417735876007428096=2^{24}\cdot 3^{6}\cdot 11^{6}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $194.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3432=2^{3}\cdot 3\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3432}(1,·)$, $\chi_{3432}(131,·)$, $\chi_{3432}(3301,·)$, $\chi_{3432}(3431,·)$, $\chi_{3432}(1453,·)$, $\chi_{3432}(1583,·)$, $\chi_{3432}(529,·)$, $\chi_{3432}(659,·)$, $\chi_{3432}(2773,·)$, $\chi_{3432}(2903,·)$, $\chi_{3432}(1849,·)$, $\chi_{3432}(1979,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{20} a^{5} + \frac{9}{20} a$, $\frac{1}{20} a^{6} + \frac{9}{20} a^{2}$, $\frac{1}{20} a^{7} + \frac{9}{20} a^{3}$, $\frac{1}{80} a^{8} - \frac{3}{40} a^{4} + \frac{5}{16}$, $\frac{1}{80} a^{9} - \frac{1}{40} a^{5} - \frac{19}{80} a$, $\frac{1}{286027811600} a^{10} + \frac{16324585}{2860278116} a^{8} + \frac{1984042089}{143013905800} a^{6} - \frac{21993493}{715069529} a^{4} + \frac{83408971921}{286027811600} a^{2} - \frac{325939045}{2860278116}$, $\frac{1}{633551602694000} a^{11} + \frac{45375872027}{126710320538800} a^{9} - \frac{7391834887771}{316775801347000} a^{7} + \frac{1508632035999}{63355160269400} a^{5} + \frac{241471788187}{1430139058000} a^{3} - \frac{7996496159929}{25342064107760} a$
Class group and class number
$C_{4}\times C_{4}\times C_{81528}$, which has order $1304448$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4543.270357084286 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{26}) \), \(\Q(\sqrt{-66}) \), \(\Q(\sqrt{-429}) \), 3.3.169.1, \(\Q(\sqrt{26}, \sqrt{-66})\), 6.6.190102016.1, 6.0.525515088384.3, 6.0.853962018624.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.307 | $x^{12} + 28 x^{11} - 2 x^{10} + 16 x^{9} + 26 x^{8} + 8 x^{7} + 20 x^{6} - 24 x^{5} - 8 x^{4} + 32 x^{3} + 32 x^{2} + 32 x + 24$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $11$ | 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.1 | $x^{6} - 22 x^{4} + 121 x^{2} - 11979$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |