Normalized defining polynomial
\( x^{12} - 4 x^{11} + 18 x^{10} - 48 x^{9} + 120 x^{8} - 212 x^{7} + 318 x^{6} - 340 x^{5} + 298 x^{4} - 172 x^{3} + 80 x^{2} - 12 x + 2 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29721861554176=2^{24}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $13.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{3} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{611975} a^{11} - \frac{2074}{122395} a^{10} - \frac{212162}{611975} a^{9} - \frac{166906}{611975} a^{8} + \frac{94391}{611975} a^{7} + \frac{90707}{611975} a^{6} - \frac{274844}{611975} a^{5} + \frac{41277}{87425} a^{4} - \frac{135726}{611975} a^{3} + \frac{717}{87425} a^{2} - \frac{8999}{611975} a + \frac{263422}{611975}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{326}{24479} a^{11} - \frac{2518}{24479} a^{10} + \frac{12842}{24479} a^{9} - \frac{43497}{24479} a^{8} + \frac{123758}{24479} a^{7} - \frac{269419}{24479} a^{6} + \frac{483576}{24479} a^{5} - \frac{91076}{3497} a^{4} + \frac{647810}{24479} a^{3} - \frac{60006}{3497} a^{2} + \frac{199638}{24479} a - \frac{21239}{24479} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 166.842264964 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_4$ (as 12T24):
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $C_2 \times S_4$ |
| Character table for $C_2 \times S_4$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.1.44.1, 6.2.1362944.1, 6.0.30976.1, 6.0.1362944.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.363 | $x^{12} + 4 x^{10} + 4 x^{9} + 4 x^{7} - 2 x^{6} + 4 x^{2} + 4 x + 2$ | $12$ | $1$ | $24$ | $C_2 \times S_4$ | $[2, 8/3, 8/3]_{3}^{2}$ |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |