Normalized defining polynomial
\( x^{12} - 4 x^{11} + 10 x^{10} - 16 x^{9} + 20 x^{8} - 20 x^{7} + 18 x^{6} - 20 x^{5} + 7 x^{4} + 4 x^{3} + 4 x^{2} - 4 x + 1 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: |
\(29365647704064\)
\(\medspace = 2^{24}\cdot 3^{6}\cdot 7^{4}\)
| sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | \(13.25\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: |
\(2\), \(3\), \(7\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$\card{ \Aut(K/\Q) }$: | $6$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{15301}a^{11}-\frac{6605}{15301}a^{10}+\frac{7066}{15301}a^{9}-\frac{5234}{15301}a^{8}-\frac{4}{15301}a^{7}-\frac{4218}{15301}a^{6}-\frac{368}{1177}a^{5}-\frac{2100}{15301}a^{4}-\frac{599}{15301}a^{3}+\frac{6345}{15301}a^{2}-\frac{4504}{15301}a+\frac{1057}{15301}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}$, which has order $2$
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: |
$\frac{1181}{15301}a^{11}+\frac{3005}{15301}a^{10}-\frac{9400}{15301}a^{9}+\frac{30852}{15301}a^{8}-\frac{35326}{15301}a^{7}+\frac{52571}{15301}a^{6}-\frac{2649}{1177}a^{5}+\frac{44565}{15301}a^{4}-\frac{64777}{15301}a^{3}-\frac{34647}{15301}a^{2}+\frac{5524}{15301}a+\frac{8936}{15301}$, $\frac{12711}{15301}a^{11}-\frac{45471}{15301}a^{10}+\frac{106163}{15301}a^{9}-\frac{153636}{15301}a^{8}+\frac{178671}{15301}a^{7}-\frac{168605}{15301}a^{6}+\frac{11520}{1177}a^{5}-\frac{191768}{15301}a^{4}+\frac{6009}{15301}a^{3}+\frac{60928}{15301}a^{2}+\frac{82503}{15301}a-\frac{14052}{15301}$, $\frac{2594}{15301}a^{11}-\frac{11551}{15301}a^{10}+\frac{29208}{15301}a^{9}-\frac{50912}{15301}a^{8}+\frac{66129}{15301}a^{7}-\frac{77782}{15301}a^{6}+\frac{5840}{1177}a^{5}-\frac{92050}{15301}a^{4}+\frac{52799}{15301}a^{3}-\frac{4946}{15301}a^{2}+\frac{21889}{15301}a-\frac{12322}{15301}$, $\frac{10117}{15301}a^{11}-\frac{33920}{15301}a^{10}+\frac{76955}{15301}a^{9}-\frac{102724}{15301}a^{8}+\frac{112542}{15301}a^{7}-\frac{90823}{15301}a^{6}+\frac{5680}{1177}a^{5}-\frac{99718}{15301}a^{4}-\frac{46790}{15301}a^{3}+\frac{65874}{15301}a^{2}+\frac{60614}{15301}a-\frac{17031}{15301}$, $\frac{8936}{15301}a^{11}-\frac{36925}{15301}a^{10}+\frac{86355}{15301}a^{9}-\frac{133576}{15301}a^{8}+\frac{147868}{15301}a^{7}-\frac{143394}{15301}a^{6}+\frac{8329}{1177}a^{5}-\frac{144283}{15301}a^{4}+\frac{17987}{15301}a^{3}+\frac{100521}{15301}a^{2}+\frac{70391}{15301}a-\frac{25967}{15301}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 29.848139323999433 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_6\times S_3$ (as 12T18):
A solvable group of order 36 |
The 18 conjugacy class representatives for $C_6\times S_3$ |
Character table for $C_6\times S_3$ |
Intermediate fields
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-2}, \sqrt{3})\), 6.0.677376.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Galois closure: | Deg 36 |
Degree 18 siblings: | 18.0.86675003008018355847168.2, 18.6.292528135152061950984192.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{3}$ | R | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{6}$ | ${\href{/padicField/13.2.0.1}{2} }^{6}$ | ${\href{/padicField/17.6.0.1}{6} }^{2}$ | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }^{2}$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{3}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{6}$ | ${\href{/padicField/43.2.0.1}{2} }^{6}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{3}$ | ${\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.12.24.307 | $x^{12} + 28 x^{11} - 2 x^{10} + 16 x^{9} + 26 x^{8} + 8 x^{7} + 20 x^{6} - 24 x^{5} - 8 x^{4} + 32 x^{3} + 32 x^{2} + 32 x + 24$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
\(3\)
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
\(7\)
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
7.6.4.1 | $x^{6} + 35 x^{3} + 441$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.8.2t1.b.a | $1$ | $ 2^{3}$ | \(\Q(\sqrt{-2}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.24.2t1.b.a | $1$ | $ 2^{3} \cdot 3 $ | \(\Q(\sqrt{-6}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
* | 1.12.2t1.a.a | $1$ | $ 2^{2} \cdot 3 $ | \(\Q(\sqrt{3}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.84.6t1.a.a | $1$ | $ 2^{2} \cdot 3 \cdot 7 $ | 6.6.4148928.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.56.6t1.c.a | $1$ | $ 2^{3} \cdot 7 $ | 6.0.1229312.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.56.6t1.c.b | $1$ | $ 2^{3} \cdot 7 $ | 6.0.1229312.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.168.6t1.c.a | $1$ | $ 2^{3} \cdot 3 \cdot 7 $ | 6.0.33191424.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.84.6t1.a.b | $1$ | $ 2^{2} \cdot 3 \cdot 7 $ | 6.6.4148928.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.168.6t1.c.b | $1$ | $ 2^{3} \cdot 3 \cdot 7 $ | 6.0.33191424.1 | $C_6$ (as 6T1) | $0$ | $-1$ | |
1.7.3t1.a.a | $1$ | $ 7 $ | \(\Q(\zeta_{7})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
1.7.3t1.a.b | $1$ | $ 7 $ | \(\Q(\zeta_{7})^+\) | $C_3$ (as 3T1) | $0$ | $1$ | |
2.1176.3t2.a.a | $2$ | $ 2^{3} \cdot 3 \cdot 7^{2}$ | 3.1.1176.1 | $S_3$ (as 3T2) | $1$ | $0$ | |
2.4704.6t3.f.a | $2$ | $ 2^{5} \cdot 3 \cdot 7^{2}$ | 6.0.44255232.1 | $D_{6}$ (as 6T3) | $1$ | $0$ | |
* | 2.168.6t5.c.a | $2$ | $ 2^{3} \cdot 3 \cdot 7 $ | 6.0.677376.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.168.6t5.c.b | $2$ | $ 2^{3} \cdot 3 \cdot 7 $ | 6.0.677376.1 | $S_3\times C_3$ (as 6T5) | $0$ | $0$ |
* | 2.672.12t18.c.a | $2$ | $ 2^{5} \cdot 3 \cdot 7 $ | 12.0.29365647704064.2 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |
* | 2.672.12t18.c.b | $2$ | $ 2^{5} \cdot 3 \cdot 7 $ | 12.0.29365647704064.2 | $C_6\times S_3$ (as 12T18) | $0$ | $0$ |