Normalized defining polynomial
\( x^{12} - 6 x^{11} + 45 x^{10} - 150 x^{9} + 636 x^{8} - 1230 x^{7} + 3551 x^{6} - 2436 x^{5} + 14157 x^{4} - 6522 x^{3} + 61566 x^{2} - 50892 x + 94429 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29218823485775015625=3^{18}\cdot 5^{6}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(585=3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{585}(1,·)$, $\chi_{585}(194,·)$, $\chi_{585}(196,·)$, $\chi_{585}(389,·)$, $\chi_{585}(391,·)$, $\chi_{585}(584,·)$, $\chi_{585}(79,·)$, $\chi_{585}(274,·)$, $\chi_{585}(116,·)$, $\chi_{585}(469,·)$, $\chi_{585}(311,·)$, $\chi_{585}(506,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{508} a^{10} - \frac{27}{254} a^{9} + \frac{31}{254} a^{8} + \frac{17}{254} a^{7} + \frac{9}{508} a^{6} - \frac{185}{508} a^{5} + \frac{89}{254} a^{4} - \frac{15}{127} a^{3} + \frac{3}{127} a^{2} + \frac{41}{254} a + \frac{187}{508}$, $\frac{1}{419275470602768363852} a^{11} + \frac{166778231041687543}{419275470602768363852} a^{10} - \frac{29733395241944836333}{419275470602768363852} a^{9} + \frac{8051203461691996503}{104818867650692090963} a^{8} + \frac{43125089231519093545}{419275470602768363852} a^{7} - \frac{4063794527607345847}{419275470602768363852} a^{6} - \frac{28667998004202411333}{209637735301384181926} a^{5} - \frac{38338515936760149998}{104818867650692090963} a^{4} - \frac{1715702181011373243}{7910857935901289884} a^{3} + \frac{35024473248234003528}{104818867650692090963} a^{2} + \frac{44283151733797831645}{104818867650692090963} a + \frac{11330722315319113213}{209637735301384181926}$
Class group and class number
$C_{152}$, which has order $152$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 201.000834787 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-195}) \), \(\Q(\sqrt{-39}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{5}, \sqrt{-39})\), 6.6.820125.1, 6.0.5405443875.3, 6.0.43243551.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.12.6.1 | $x^{12} + 338 x^{8} + 8788 x^{6} + 28561 x^{4} + 19307236$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |