Normalized defining polynomial
\( x^{12} - 6 x^{11} + 57 x^{10} - 230 x^{9} + 1374 x^{8} - 4182 x^{7} + 18835 x^{6} - 42768 x^{5} + 156027 x^{4} - 245226 x^{3} + 739656 x^{2} - 623538 x + 1615461 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2917096519063104000000=2^{12}\cdot 3^{18}\cdot 5^{6}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1260=2^{2}\cdot 3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1260}(1,·)$, $\chi_{1260}(419,·)$, $\chi_{1260}(421,·)$, $\chi_{1260}(769,·)$, $\chi_{1260}(841,·)$, $\chi_{1260}(491,·)$, $\chi_{1260}(911,·)$, $\chi_{1260}(839,·)$, $\chi_{1260}(1259,·)$, $\chi_{1260}(71,·)$, $\chi_{1260}(349,·)$, $\chi_{1260}(1189,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3426158341} a^{10} - \frac{5}{3426158341} a^{9} + \frac{1447501058}{3426158341} a^{8} + \frac{1062312480}{3426158341} a^{7} - \frac{866354134}{3426158341} a^{6} - \frac{1119031299}{3426158341} a^{5} + \frac{392120505}{3426158341} a^{4} - \frac{1105982616}{3426158341} a^{3} + \frac{1291202433}{3426158341} a^{2} - \frac{1101768423}{3426158341} a - \frac{840087337}{3426158341}$, $\frac{1}{265551254535887} a^{11} + \frac{38748}{265551254535887} a^{10} + \frac{5003638485153}{265551254535887} a^{9} + \frac{33579358196102}{265551254535887} a^{8} - \frac{69395200480764}{265551254535887} a^{7} + \frac{60147620631854}{265551254535887} a^{6} + \frac{24239528574970}{265551254535887} a^{5} - \frac{108722554929639}{265551254535887} a^{4} + \frac{58918606562331}{265551254535887} a^{3} + \frac{16772294784857}{265551254535887} a^{2} + \frac{2195439679976}{5010401028979} a - \frac{101007122065600}{265551254535887}$
Class group and class number
$C_{6}\times C_{372}$, which has order $2232$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 325.67540279491664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{-105}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{3}, \sqrt{-35})\), \(\Q(\zeta_{36})^+\), 6.0.281302875.3, 6.0.54010152000.17 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| $3$ | 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.3 | $x^{6} + 3 x^{4} + 24$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.12.6.1 | $x^{12} + 294 x^{8} + 3430 x^{6} + 21609 x^{4} + 487403 x^{2} + 2941225$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |