Normalized defining polynomial
\( x^{12} - x^{11} + 128 x^{10} - 36 x^{9} + 6953 x^{8} + 1688 x^{7} + 205004 x^{6} + 100734 x^{5} + 3493011 x^{4} + 1447263 x^{3} + 32886288 x^{2} + 7087687 x + 134106701 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(28888480797518767578125=5^{9}\cdot 7^{8}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $74.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1295=5\cdot 7\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1295}(704,·)$, $\chi_{1295}(1,·)$, $\chi_{1295}(998,·)$, $\chi_{1295}(519,·)$, $\chi_{1295}(1257,·)$, $\chi_{1295}(813,·)$, $\chi_{1295}(1072,·)$, $\chi_{1295}(149,·)$, $\chi_{1295}(186,·)$, $\chi_{1295}(443,·)$, $\chi_{1295}(926,·)$, $\chi_{1295}(702,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{109} a^{9} + \frac{27}{109} a^{8} - \frac{29}{109} a^{7} + \frac{35}{109} a^{6} - \frac{41}{109} a^{5} + \frac{37}{109} a^{4} - \frac{34}{109} a^{3} - \frac{2}{109} a^{2} - \frac{27}{109} a - \frac{30}{109}$, $\frac{1}{109} a^{10} + \frac{5}{109} a^{8} - \frac{54}{109} a^{7} - \frac{5}{109} a^{6} + \frac{54}{109} a^{5} - \frac{52}{109} a^{4} + \frac{44}{109} a^{3} + \frac{27}{109} a^{2} + \frac{45}{109} a + \frac{47}{109}$, $\frac{1}{22989983647052432303148594509879} a^{11} + \frac{34417094871172601513774954126}{22989983647052432303148594509879} a^{10} - \frac{7022146892953002903756175260}{22989983647052432303148594509879} a^{9} + \frac{9106202766678652590109184215974}{22989983647052432303148594509879} a^{8} + \frac{1527890191529816558170087604439}{22989983647052432303148594509879} a^{7} - \frac{11476949679396710985323893987807}{22989983647052432303148594509879} a^{6} + \frac{5450559081726941618207566448650}{22989983647052432303148594509879} a^{5} - \frac{7510409140734848772673553201156}{22989983647052432303148594509879} a^{4} - \frac{5212032905851160462071378372485}{22989983647052432303148594509879} a^{3} + \frac{9855914926945359087938568550386}{22989983647052432303148594509879} a^{2} - \frac{5418692396132287214668334608203}{22989983647052432303148594509879} a - \frac{318140993154872682583468438981}{792758056794911458729261879651}$
Class group and class number
$C_{37}\times C_{370}$, which has order $13690$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.171125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ |
| $37$ | 37.12.6.2 | $x^{12} - 69343957 x^{2} + 51314528180$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |