Normalized defining polynomial
\( x^{12} - 6 x^{11} + 123 x^{10} - 560 x^{9} + 4758 x^{8} - 15738 x^{7} + 53621 x^{6} - 108066 x^{5} + 285141 x^{4} - 407446 x^{3} + 715986 x^{2} - 527814 x + 1184689 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(286051027323963456000000=2^{12}\cdot 3^{6}\cdot 5^{6}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1140=2^{2}\cdot 3\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1140}(1,·)$, $\chi_{1140}(1091,·)$, $\chi_{1140}(229,·)$, $\chi_{1140}(961,·)$, $\chi_{1140}(911,·)$, $\chi_{1140}(49,·)$, $\chi_{1140}(179,·)$, $\chi_{1140}(1139,·)$, $\chi_{1140}(791,·)$, $\chi_{1140}(121,·)$, $\chi_{1140}(1019,·)$, $\chi_{1140}(349,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{21} a^{7} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{21} a - \frac{8}{21}$, $\frac{1}{63} a^{8} - \frac{1}{63} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} + \frac{4}{9} a^{3} - \frac{13}{63} a^{2} + \frac{19}{63} a + \frac{22}{63}$, $\frac{1}{63} a^{9} + \frac{1}{63} a^{7} + \frac{1}{9} a^{6} - \frac{1}{9} a^{4} + \frac{5}{21} a^{3} - \frac{5}{21} a^{2} + \frac{29}{63} a + \frac{13}{63}$, $\frac{1}{45586531683} a^{10} - \frac{5}{45586531683} a^{9} + \frac{208100357}{45586531683} a^{8} - \frac{832401398}{45586531683} a^{7} + \frac{32713700}{723595741} a^{6} - \frac{467069204}{6512361669} a^{5} + \frac{771217857}{5065170187} a^{4} - \frac{9403915667}{45586531683} a^{3} - \frac{3846968495}{45586531683} a^{2} + \frac{8142745822}{45586531683} a - \frac{359219771}{4144230153}$, $\frac{1}{429926580302373} a^{11} + \frac{1570}{143308860100791} a^{10} - \frac{1929621764465}{429926580302373} a^{9} - \frac{571752082588}{429926580302373} a^{8} + \frac{134489691317}{429926580302373} a^{7} + \frac{3805995756718}{61418082900339} a^{6} - \frac{17627222659213}{429926580302373} a^{5} - \frac{55447126428794}{429926580302373} a^{4} + \frac{18708738111671}{47769620033597} a^{3} + \frac{19257305895857}{47769620033597} a^{2} + \frac{137025324971923}{429926580302373} a - \frac{11929969698175}{39084234572943}$
Class group and class number
$C_{2}\times C_{14}\times C_{392}$, which has order $10976$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1234.5516326116856 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-285}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-57}) \), 3.3.361.1, \(\Q(\sqrt{5}, \sqrt{-57})\), 6.0.534837384000.9, 6.6.16290125.1, 6.0.4278699072.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $19$ | 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |