Normalized defining polynomial
\( x^{12} - 2 x^{11} - 6 x^{10} + 30 x^{9} - 17 x^{8} - 50 x^{7} + 172 x^{6} - 204 x^{5} + 266 x^{4} - 228 x^{3} + 384 x^{2} - 206 x + 125 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2779905883635712=2^{18}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{265} a^{9} - \frac{4}{53} a^{8} + \frac{128}{265} a^{7} - \frac{112}{265} a^{6} + \frac{91}{265} a^{5} + \frac{10}{53} a^{4} + \frac{62}{265} a^{3} - \frac{93}{265} a^{2} - \frac{122}{265} a + \frac{3}{53}$, $\frac{1}{265} a^{10} - \frac{7}{265} a^{8} + \frac{63}{265} a^{7} - \frac{29}{265} a^{6} + \frac{3}{53} a^{5} + \frac{2}{265} a^{4} + \frac{87}{265} a^{3} - \frac{127}{265} a^{2} - \frac{8}{53} a + \frac{7}{53}$, $\frac{1}{1783504325} a^{11} - \frac{468629}{356700865} a^{10} - \frac{2448941}{1783504325} a^{9} + \frac{234624333}{1783504325} a^{8} - \frac{639305346}{1783504325} a^{7} + \frac{573936963}{1783504325} a^{6} + \frac{633973138}{1783504325} a^{5} + \frac{137766927}{1783504325} a^{4} + \frac{112233513}{356700865} a^{3} + \frac{168916367}{1783504325} a^{2} + \frac{709522173}{1783504325} a + \frac{17909263}{71340173}$
Class group and class number
$C_{3}$, which has order $3$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{134877}{16362425} a^{11} + \frac{40892}{3272485} a^{10} + \frac{937757}{16362425} a^{9} - \frac{3610431}{16362425} a^{8} + \frac{515152}{16362425} a^{7} + \frac{7421294}{16362425} a^{6} - \frac{20663451}{16362425} a^{5} + \frac{19764911}{16362425} a^{4} - \frac{3928168}{3272485} a^{3} + \frac{10675001}{16362425} a^{2} - \frac{31607796}{16362425} a + \frac{374126}{654497} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 919.513377747 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times D_4$ (as 12T14):
| A solvable group of order 24 |
| The 15 conjugacy class representatives for $D_4 \times C_3$ |
| Character table for $D_4 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.169.1, 4.0.832.1, 6.0.1827904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.63 | $x^{12} + 6 x^{11} + 8 x^{10} - 52 x^{9} - 10 x^{8} + 24 x^{7} + 8 x^{6} + 64 x^{5} + 28 x^{4} - 40 x^{3} - 16 x^{2} - 16 x + 40$ | $4$ | $3$ | $18$ | $D_4 \times C_3$ | $[2, 2]^{6}$ |
| $13$ | 13.6.5.5 | $x^{6} + 104$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.4.3 | $x^{6} + 65 x^{3} + 1352$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |