Properties

Label 12.0.2758547353515625.1
Degree $12$
Signature $[0, 6]$
Discriminant $5^{10}\cdot 7^{10}$
Root discriminant $19.35$
Ramified primes $5, 7$
Class number $3$
Class group $[3]$
Galois group $C_6\times S_3$ (as 12T18)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![64, -400, 908, -870, 855, -590, 370, -195, 100, -40, 13, -5, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 5*x^11 + 13*x^10 - 40*x^9 + 100*x^8 - 195*x^7 + 370*x^6 - 590*x^5 + 855*x^4 - 870*x^3 + 908*x^2 - 400*x + 64)
 
gp: K = bnfinit(x^12 - 5*x^11 + 13*x^10 - 40*x^9 + 100*x^8 - 195*x^7 + 370*x^6 - 590*x^5 + 855*x^4 - 870*x^3 + 908*x^2 - 400*x + 64, 1)
 

Normalized defining polynomial

\( x^{12} - 5 x^{11} + 13 x^{10} - 40 x^{9} + 100 x^{8} - 195 x^{7} + 370 x^{6} - 590 x^{5} + 855 x^{4} - 870 x^{3} + 908 x^{2} - 400 x + 64 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2758547353515625=5^{10}\cdot 7^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $19.35$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{44} a^{10} + \frac{9}{44} a^{9} - \frac{9}{44} a^{8} - \frac{1}{22} a^{7} - \frac{1}{11} a^{6} + \frac{1}{44} a^{5} + \frac{2}{11} a^{4} - \frac{5}{22} a^{3} + \frac{15}{44} a^{2} - \frac{4}{11} a + \frac{1}{11}$, $\frac{1}{166720117168} a^{11} - \frac{963290513}{166720117168} a^{10} + \frac{30207277985}{166720117168} a^{9} + \frac{10512671693}{41680029292} a^{8} + \frac{13761489167}{41680029292} a^{7} + \frac{9078468109}{166720117168} a^{6} + \frac{28457837843}{83360058584} a^{5} - \frac{2857206173}{7578187144} a^{4} + \frac{50006106191}{166720117168} a^{3} + \frac{271572537}{7578187144} a^{2} - \frac{11414512861}{41680029292} a - \frac{3588834424}{10420007323}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 357.383618201 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_6\times S_3$ (as 12T18):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 36
The 18 conjugacy class representatives for $C_6\times S_3$
Character table for $C_6\times S_3$

Intermediate fields

\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{5}, \sqrt{-7})\), 6.0.10504375.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 18 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ R R ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.12.10.2$x^{12} + 15 x^{6} + 100$$6$$2$$10$$C_6\times S_3$$[\ ]_{6}^{6}$
$7$7.12.10.1$x^{12} - 70 x^{6} + 35721$$6$$2$$10$$C_6\times C_2$$[\ ]_{6}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
* 1.7.2t1.1c1$1$ $ 7 $ $x^{2} - x + 2$ $C_2$ (as 2T1) $1$ $-1$
* 1.5_7.2t1.1c1$1$ $ 5 \cdot 7 $ $x^{2} - x + 9$ $C_2$ (as 2T1) $1$ $-1$
1.7.6t1.1c1$1$ $ 7 $ $x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$ $C_6$ (as 6T1) $0$ $-1$
1.5_7.6t1.2c1$1$ $ 5 \cdot 7 $ $x^{6} - x^{5} + 8 x^{4} - 8 x^{3} + 22 x^{2} - 22 x + 29$ $C_6$ (as 6T1) $0$ $-1$
1.7.3t1.1c1$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
1.7.3t1.1c2$1$ $ 7 $ $x^{3} - x^{2} - 2 x + 1$ $C_3$ (as 3T1) $0$ $1$
1.5_7.6t1.1c1$1$ $ 5 \cdot 7 $ $x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1$ $C_6$ (as 6T1) $0$ $1$
1.7.6t1.1c2$1$ $ 7 $ $x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1$ $C_6$ (as 6T1) $0$ $-1$
1.5_7.6t1.1c2$1$ $ 5 \cdot 7 $ $x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 7 x^{2} - 2 x - 1$ $C_6$ (as 6T1) $0$ $1$
1.5_7.6t1.2c2$1$ $ 5 \cdot 7 $ $x^{6} - x^{5} + 8 x^{4} - 8 x^{3} + 22 x^{2} - 22 x + 29$ $C_6$ (as 6T1) $0$ $-1$
2.5e2_7.3t2.1c1$2$ $ 5^{2} \cdot 7 $ $x^{3} - x^{2} + 2 x - 3$ $S_3$ (as 3T2) $1$ $0$
2.5e2_7.6t3.1c1$2$ $ 5^{2} \cdot 7 $ $x^{6} - x^{5} + 4 x + 1$ $D_{6}$ (as 6T3) $1$ $0$
* 2.5e2_7e2.6t5.1c1$2$ $ 5^{2} \cdot 7^{2}$ $x^{6} - x^{5} + x^{4} + 6 x^{3} + 8 x^{2} - 29 x + 22$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.5e2_7e2.6t5.1c2$2$ $ 5^{2} \cdot 7^{2}$ $x^{6} - x^{5} + x^{4} + 6 x^{3} + 8 x^{2} - 29 x + 22$ $S_3\times C_3$ (as 6T5) $0$ $0$
* 2.5e2_7e2.12t18.2c1$2$ $ 5^{2} \cdot 7^{2}$ $x^{12} - 5 x^{11} + 13 x^{10} - 40 x^{9} + 100 x^{8} - 195 x^{7} + 370 x^{6} - 590 x^{5} + 855 x^{4} - 870 x^{3} + 908 x^{2} - 400 x + 64$ $C_6\times S_3$ (as 12T18) $0$ $0$
* 2.5e2_7e2.12t18.2c2$2$ $ 5^{2} \cdot 7^{2}$ $x^{12} - 5 x^{11} + 13 x^{10} - 40 x^{9} + 100 x^{8} - 195 x^{7} + 370 x^{6} - 590 x^{5} + 855 x^{4} - 870 x^{3} + 908 x^{2} - 400 x + 64$ $C_6\times S_3$ (as 12T18) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.