Normalized defining polynomial
\( x^{12} - 3 x^{11} + 13 x^{10} - 14 x^{9} + 52 x^{8} - 44 x^{7} + 133 x^{6} - 14 x^{5} + 103 x^{4} + 204 x^{3} + 127 x^{2} + 90 x + 81 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(274941996890625=3^{6}\cdot 5^{6}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{4} - \frac{1}{9} a^{3} + \frac{1}{9} a^{2} - \frac{1}{9} a$, $\frac{1}{9} a^{7} - \frac{1}{9} a$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{2}$, $\frac{1}{27} a^{9} + \frac{1}{27} a^{7} - \frac{1}{27} a^{6} + \frac{1}{27} a^{5} + \frac{8}{27} a^{4} - \frac{1}{3} a^{3} - \frac{10}{27} a^{2} + \frac{1}{3} a$, $\frac{1}{1053} a^{10} + \frac{14}{1053} a^{9} + \frac{37}{1053} a^{8} - \frac{41}{1053} a^{7} - \frac{22}{1053} a^{6} + \frac{166}{1053} a^{5} + \frac{175}{1053} a^{4} + \frac{197}{1053} a^{3} - \frac{419}{1053} a^{2} + \frac{11}{39} a - \frac{2}{13}$, $\frac{1}{1677429} a^{11} + \frac{400}{1677429} a^{10} + \frac{17843}{1677429} a^{9} - \frac{11711}{559143} a^{8} - \frac{79613}{1677429} a^{7} + \frac{73808}{1677429} a^{6} + \frac{10649}{186381} a^{5} + \frac{659533}{1677429} a^{4} - \frac{102100}{1677429} a^{3} + \frac{502889}{1677429} a^{2} - \frac{89590}{186381} a - \frac{4360}{20709}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{14024}{1677429} a^{11} - \frac{39178}{1677429} a^{10} + \frac{13372}{129033} a^{9} - \frac{57298}{559143} a^{8} + \frac{55967}{129033} a^{7} - \frac{616709}{1677429} a^{6} + \frac{15967}{14337} a^{5} - \frac{334675}{1677429} a^{4} + \frac{1863937}{1677429} a^{3} + \frac{1583515}{1677429} a^{2} + \frac{245413}{186381} a + \frac{20188}{20709} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 697.177965406 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 12 |
| The 6 conjugacy class representatives for $D_6$ |
| Character table for $D_6$ |
Intermediate fields
| \(\Q(\sqrt{-255}) \), \(\Q(\sqrt{85}) \), \(\Q(\sqrt{-3}) \), 3.1.255.1 x3, \(\Q(\sqrt{-3}, \sqrt{85})\), 6.0.16581375.1, 6.2.5527125.2 x3, 6.0.195075.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{2}$ | R | R | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |