Normalized defining polynomial
\( x^{12} + 64638 x^{8} - 1550780 x^{6} + 536348169 x^{4} + 50119658820 x^{2} + 1100619202816 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2748267123526559548681146214649856=2^{12}\cdot 3^{18}\cdot 7^{10}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $611.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(4225,·)$, $\chi_{4788}(961,·)$, $\chi_{4788}(4567,·)$, $\chi_{4788}(1,·)$, $\chi_{4788}(4103,·)$, $\chi_{4788}(2957,·)$, $\chi_{4788}(4723,·)$, $\chi_{4788}(2615,·)$, $\chi_{4788}(3079,·)$, $\chi_{4788}(1433,·)$, $\chi_{4788}(2459,·)$, $\chi_{4788}(2393,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{1064} a^{6} - \frac{1}{8} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{123424} a^{7} - \frac{19}{464} a^{5} - \frac{127}{928} a^{3} + \frac{101}{232} a$, $\frac{1}{493696} a^{8} - \frac{33}{246848} a^{6} - \frac{243}{3712} a^{4} + \frac{333}{928} a^{2}$, $\frac{1}{8392832} a^{9} + \frac{5}{4196416} a^{7} - \frac{811}{63104} a^{5} - \frac{375}{3944} a^{3} - \frac{1561}{3944} a$, $\frac{1}{167489993024098304} a^{10} + \frac{40979486775}{167489993024098304} a^{8} + \frac{70458371444815}{167489993024098304} a^{6} - \frac{21740449685159}{1259323255820288} a^{4} - \frac{110000148162891}{314830813955072} a^{2} - \frac{140605043}{344074384}$, $\frac{1}{22276169072205074432} a^{11} - \frac{292073461}{167489993024098304} a^{9} + \frac{227866670147}{167489993024098304} a^{7} + \frac{3742259897785305}{167489993024098304} a^{5} + \frac{51484732917713}{314830813955072} a^{3} + \frac{47890787139}{169628671312} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{12}\times C_{12}\times C_{5928}$, which has order $54632448$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 974687.3124913415 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-399}) \), \(\Q(\sqrt{-57}) \), 3.3.1432809.2, \(\Q(\sqrt{7}, \sqrt{-57})\), 6.6.919717850455488.4, 6.0.819123710561919.3, 6.0.7489131067994688.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.12.10.3 | $x^{12} - 49 x^{6} + 3969$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $19$ | 19.6.5.1 | $x^{6} - 304$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.1 | $x^{6} - 304$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |