Normalized defining polynomial
\( x^{12} + 798 x^{10} + 166383 x^{8} + 11626860 x^{6} + 174325095 x^{4} + 743627871 x^{2} + 1432809 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2748267123526559548681146214649856=2^{12}\cdot 3^{18}\cdot 7^{10}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $611.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(3457,·)$, $\chi_{4788}(3299,·)$, $\chi_{4788}(2015,·)$, $\chi_{4788}(1,·)$, $\chi_{4788}(4777,·)$, $\chi_{4788}(4103,·)$, $\chi_{4788}(1741,·)$, $\chi_{4788}(1775,·)$, $\chi_{4788}(277,·)$, $\chi_{4788}(121,·)$, $\chi_{4788}(2747,·)$, $\chi_{4788}(4415,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{399} a^{6}$, $\frac{1}{399} a^{7}$, $\frac{1}{1197} a^{8} + \frac{1}{3} a^{2}$, $\frac{1}{1197} a^{9} + \frac{1}{3} a^{3}$, $\frac{1}{2368926497557053} a^{10} - \frac{654849203}{87738018428039} a^{8} - \frac{292870908598}{263214055284117} a^{6} + \frac{1201811441056}{5937159141747} a^{4} - \frac{822467791583}{1979053047249} a^{2} - \frac{29370137759}{659684349083}$, $\frac{1}{945201672525264147} a^{11} - \frac{8095017200}{124680341976687} a^{9} - \frac{98343095276}{87738018428039} a^{7} + \frac{672100794458467}{2368926497557053} a^{5} - \frac{2674681560889}{5937159141747} a^{3} - \frac{134141711000}{1979053047249} a$
Class group and class number
$C_{6}\times C_{6}\times C_{327894}$, which has order $11804184$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 150874.89368738522 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-57}) \), \(\Q(\sqrt{133}) \), 3.3.1432809.1, \(\Q(\sqrt{-21}, \sqrt{-57})\), 6.0.2759153551366464.4, 6.0.7489131067994688.3, 6.6.273041236853973.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/23.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ |
| $3$ | 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $7$ | 7.12.10.2 | $x^{12} + 35 x^{6} + 441$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $19$ | 19.6.5.3 | $x^{6} - 4864$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.3 | $x^{6} - 4864$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |