Normalized defining polynomial
\( x^{12} - x^{11} + 235 x^{10} - 235 x^{9} + 21295 x^{8} - 21295 x^{7} + 931087 x^{6} - 931087 x^{5} + 20036719 x^{4} - 20036719 x^{3} + 191987407 x^{2} - 191987407 x + 634146319 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(271215206617378764238693=13^{11}\cdot 73^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(949=13\cdot 73\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{949}(1,·)$, $\chi_{949}(291,·)$, $\chi_{949}(583,·)$, $\chi_{949}(72,·)$, $\chi_{949}(74,·)$, $\chi_{949}(656,·)$, $\chi_{949}(145,·)$, $\chi_{949}(147,·)$, $\chi_{949}(437,·)$, $\chi_{949}(439,·)$, $\chi_{949}(731,·)$, $\chi_{949}(220,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{81546139} a^{7} + \frac{19352569}{81546139} a^{6} + \frac{126}{81546139} a^{5} - \frac{30122162}{81546139} a^{4} + \frac{4536}{81546139} a^{3} + \frac{2163016}{81546139} a^{2} + \frac{40824}{81546139} a + \frac{8652064}{81546139}$, $\frac{1}{81546139} a^{8} + \frac{144}{81546139} a^{6} - \frac{22161686}{81546139} a^{5} + \frac{6480}{81546139} a^{4} - \frac{37444404}{81546139} a^{3} + \frac{93312}{81546139} a^{2} - \frac{21630160}{81546139} a + \frac{209952}{81546139}$, $\frac{1}{81546139} a^{9} - \frac{36362896}{81546139} a^{6} - \frac{11664}{81546139} a^{5} - \frac{21798443}{81546139} a^{4} - \frac{559872}{81546139} a^{3} - \frac{6919908}{81546139} a^{2} - \frac{5668704}{81546139} a - \frac{22705131}{81546139}$, $\frac{1}{81546139} a^{10} - \frac{14580}{81546139} a^{6} - \frac{6657331}{81546139} a^{5} - \frac{874800}{81546139} a^{4} - \frac{32662849}{81546139} a^{3} - \frac{14171760}{81546139} a^{2} - \frac{9753183}{81546139} a - \frac{34012224}{81546139}$, $\frac{1}{81546139} a^{11} + \frac{4157749}{81546139} a^{6} + \frac{962280}{81546139} a^{5} - \frac{6280155}{81546139} a^{4} - \frac{29583019}{81546139} a^{3} - \frac{31335696}{81546139} a^{2} - \frac{9621277}{81546139} a - \frac{4783913}{81546139}$
Class group and class number
$C_{2}\times C_{2}\times C_{5986}$, which has order $23944$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.11707813.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |
| $73$ | 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 73.4.2.2 | $x^{4} - 73 x^{2} + 58619$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |