Normalized defining polynomial
\( x^{12} - 2 x^{11} + 15 x^{10} - 14 x^{9} + 72 x^{8} - 56 x^{7} + 137 x^{6} + 456 x^{5} + 982 x^{4} + 303 x^{3} + 738 x^{2} + 378 x + 81 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(268657648751953125=3^{4}\cdot 5^{9}\cdot 7^{4}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{4}{9} a^{7} + \frac{1}{3} a^{6} - \frac{2}{9} a^{5} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{15932582061797907} a^{11} + \frac{660942216975868}{15932582061797907} a^{10} + \frac{816480282184511}{5310860687265969} a^{9} + \frac{6857627141493814}{15932582061797907} a^{8} - \frac{880927073692844}{1770286895755323} a^{7} - \frac{5587879861769483}{15932582061797907} a^{6} + \frac{6958776257541560}{15932582061797907} a^{5} + \frac{2182652854332089}{5310860687265969} a^{4} - \frac{5537412293979986}{15932582061797907} a^{3} + \frac{733416984976220}{5310860687265969} a^{2} - \frac{582021778007248}{1770286895755323} a + \frac{58937611643268}{590095631918441}$
Class group and class number
$C_{12}$, which has order $12$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{112732558200133}{15932582061797907} a^{11} + \frac{237578470471487}{15932582061797907} a^{10} - \frac{63220622506136}{590095631918441} a^{9} + \frac{1756900036055141}{15932582061797907} a^{8} - \frac{2736863649964129}{5310860687265969} a^{7} + \frac{7358753507308916}{15932582061797907} a^{6} - \frac{16050144395576294}{15932582061797907} a^{5} - \frac{16163129195058988}{5310860687265969} a^{4} - \frac{106007928656864470}{15932582061797907} a^{3} - \frac{505273891998988}{590095631918441} a^{2} - \frac{2510881085798892}{590095631918441} a - \frac{810625387074444}{590095631918441} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2020.68855817 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2.S_3^2$ (as 12T39):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2.S_3^2$ |
| Character table for $C_2.S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 6.6.46360125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.12.9.2 | $x^{12} - 10 x^{8} + 25 x^{4} - 500$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.6.4.1 | $x^{6} + 232 x^{3} + 22707$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |