Normalized defining polynomial
\( x^{12} - 2 x^{11} + 27 x^{10} - 42 x^{9} + 419 x^{8} - 538 x^{7} + 4136 x^{6} - 4132 x^{5} + 26950 x^{4} - 19172 x^{3} + 108501 x^{2} - 42258 x + 211303 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26345168059215642624=2^{18}\cdot 3^{6}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $41.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(312=2^{3}\cdot 3\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{312}(1,·)$, $\chi_{312}(49,·)$, $\chi_{312}(101,·)$, $\chi_{312}(289,·)$, $\chi_{312}(269,·)$, $\chi_{312}(77,·)$, $\chi_{312}(173,·)$, $\chi_{312}(53,·)$, $\chi_{312}(25,·)$, $\chi_{312}(121,·)$, $\chi_{312}(217,·)$, $\chi_{312}(29,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5259824468338373818669} a^{11} - \frac{32808656046932673625}{5259824468338373818669} a^{10} - \frac{2582910679287325206023}{5259824468338373818669} a^{9} + \frac{574038348157818368535}{5259824468338373818669} a^{8} - \frac{1381238359199249379099}{5259824468338373818669} a^{7} - \frac{845555232512274418448}{5259824468338373818669} a^{6} + \frac{585112643257628249987}{5259824468338373818669} a^{5} - \frac{2347980292206020305785}{5259824468338373818669} a^{4} + \frac{1520273235021287060672}{5259824468338373818669} a^{3} + \frac{1741557179291549423220}{5259824468338373818669} a^{2} + \frac{1885231318072366630367}{5259824468338373818669} a + \frac{420234351255022327558}{5259824468338373818669}$
Class group and class number
$C_{2}\times C_{182}$, which has order $364$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-78}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{13}) \), 3.3.169.1, \(\Q(\sqrt{-6}, \sqrt{13})\), 6.0.5132754432.1, 6.0.394827264.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.23 | $x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.12.10.1 | $x^{12} - 117 x^{6} + 10816$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |