Normalized defining polynomial
\( x^{12} + 96 x^{10} - 56 x^{9} + 3786 x^{8} - 4536 x^{7} + 74498 x^{6} - 130200 x^{5} + 924369 x^{4} - 1441552 x^{3} + 6626874 x^{2} - 2382072 x + 20331721 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(260575062921050587398144=2^{18}\cdot 3^{18}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2664=2^{3}\cdot 3^{2}\cdot 37\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2664}(1,·)$, $\chi_{2664}(1553,·)$, $\chi_{2664}(2441,·)$, $\chi_{2664}(1997,·)$, $\chi_{2664}(2221,·)$, $\chi_{2664}(1777,·)$, $\chi_{2664}(1109,·)$, $\chi_{2664}(665,·)$, $\chi_{2664}(889,·)$, $\chi_{2664}(221,·)$, $\chi_{2664}(445,·)$, $\chi_{2664}(1333,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{20} a^{6} + \frac{2}{5} a^{4} + \frac{1}{10} a^{3} + \frac{1}{20} a^{2} + \frac{3}{10} a - \frac{1}{20}$, $\frac{1}{20} a^{7} + \frac{2}{5} a^{5} + \frac{1}{10} a^{4} + \frac{1}{20} a^{3} + \frac{3}{10} a^{2} - \frac{1}{20} a$, $\frac{1}{20} a^{8} + \frac{1}{10} a^{5} - \frac{3}{20} a^{4} - \frac{1}{2} a^{3} - \frac{9}{20} a^{2} - \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{30260} a^{9} - \frac{559}{30260} a^{8} - \frac{523}{30260} a^{7} + \frac{179}{15130} a^{6} - \frac{2089}{6052} a^{5} - \frac{231}{30260} a^{4} - \frac{847}{3026} a^{3} - \frac{2279}{30260} a^{2} - \frac{7661}{30260} a + \frac{2603}{7565}$, $\frac{1}{30260} a^{10} + \frac{11}{1780} a^{8} + \frac{1}{3026} a^{7} + \frac{138}{7565} a^{6} - \frac{458}{7565} a^{5} - \frac{4497}{15130} a^{4} + \frac{161}{1513} a^{3} + \frac{1107}{7565} a^{2} - \frac{1957}{15130} a + \frac{11901}{30260}$, $\frac{1}{99838765255305726515860} a^{11} - \frac{673429891332841741}{49919382627652863257930} a^{10} - \frac{286793381586547455}{19967753051061145303172} a^{9} + \frac{234402825236944682533}{49919382627652863257930} a^{8} - \frac{119482063918526372473}{19967753051061145303172} a^{7} - \frac{993402908320170535253}{49919382627652863257930} a^{6} - \frac{845082546034137449890}{4991938262765286325793} a^{5} - \frac{7699020974055025064966}{24959691313826431628965} a^{4} - \frac{45400793585706197243403}{99838765255305726515860} a^{3} + \frac{7248258642933154822497}{24959691313826431628965} a^{2} - \frac{10426183391883322938413}{49919382627652863257930} a - \frac{3214615395668415803779}{24959691313826431628965}$
Class group and class number
$C_{4}\times C_{4}\times C_{1008}$, which has order $16128$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 481.70037561485367 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-222}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-111}) \), \(\Q(\zeta_{9})^+\), \(\Q(\sqrt{2}, \sqrt{-111})\), 6.0.510465535488.3, 6.6.3359232.1, 6.0.997002999.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.1 | $x^{6} + 4 x^{4} + 4 x^{2} - 8$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $3$ | 3.12.18.82 | $x^{12} - 9 x^{9} + 9 x^{8} - 9 x^{5} - 9 x^{4} - 9 x^{3} + 9$ | $6$ | $2$ | $18$ | $C_6\times C_2$ | $[2]_{2}^{2}$ |
| $37$ | 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |