Normalized defining polynomial
\( x^{12} - 6 x^{11} + 81 x^{10} - 350 x^{9} + 2868 x^{8} - 9438 x^{7} + 52261 x^{6} - 125154 x^{5} + 550392 x^{4} - 902538 x^{3} + 2888181 x^{2} - 2456298 x + 13749723 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(260560131209473946812416=2^{18}\cdot 3^{6}\cdot 7^{10}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $89.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2184=2^{3}\cdot 3\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2184}(1,·)$, $\chi_{2184}(1091,·)$, $\chi_{2184}(131,·)$, $\chi_{2184}(961,·)$, $\chi_{2184}(1067,·)$, $\chi_{2184}(337,·)$, $\chi_{2184}(467,·)$, $\chi_{2184}(755,·)$, $\chi_{2184}(625,·)$, $\chi_{2184}(25,·)$, $\chi_{2184}(1403,·)$, $\chi_{2184}(1873,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6} a^{4} - \frac{1}{3} a^{3} + \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{5} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{6} + \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{6} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{36} a^{8} + \frac{1}{18} a^{7} + \frac{1}{18} a^{5} + \frac{1}{36} a^{4} - \frac{1}{6} a^{3} + \frac{1}{4}$, $\frac{1}{36} a^{9} + \frac{1}{18} a^{7} + \frac{1}{18} a^{6} - \frac{1}{12} a^{5} - \frac{1}{18} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{4} a$, $\frac{1}{40771170756} a^{10} - \frac{5}{40771170756} a^{9} - \frac{34892885}{4530130084} a^{8} + \frac{209357315}{6795195126} a^{7} + \frac{2199349373}{40771170756} a^{6} + \frac{865279499}{13590390252} a^{5} - \frac{284751367}{40771170756} a^{4} + \frac{3393209479}{6795195126} a^{3} - \frac{1318699169}{4530130084} a^{2} - \frac{1549278753}{4530130084} a + \frac{94673577}{4530130084}$, $\frac{1}{9466617366664884} a^{11} + \frac{116089}{9466617366664884} a^{10} - \frac{3541841661389}{1051846374073876} a^{9} + \frac{35662245445159}{3155539122221628} a^{8} - \frac{558604525012009}{9466617366664884} a^{7} - \frac{105068103740551}{3155539122221628} a^{6} - \frac{414417684072985}{9466617366664884} a^{5} - \frac{142328535258637}{3155539122221628} a^{4} - \frac{4484303861471}{10843777052308} a^{3} - \frac{5234109932475}{10843777052308} a^{2} + \frac{371330379768285}{1051846374073876} a + \frac{387785736517459}{1051846374073876}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{84}$, which has order $12096$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 562.7753300008496 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-546}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{13}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{13}, \sqrt{-42})\), 6.0.510450909696.3, 6.0.232339968.1, 6.6.5274997.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ |
| $3$ | 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |