Normalized defining polynomial
\( x^{12} - x^{11} + 163 x^{10} - 164 x^{9} + 9854 x^{8} - 10018 x^{7} + 283912 x^{6} - 311604 x^{5} + 4213235 x^{4} - 4872746 x^{3} + 32079035 x^{2} - 27964467 x + 110528251 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(25955658105272205078125=5^{9}\cdot 7^{10}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(665=5\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{665}(1,·)$, $\chi_{665}(227,·)$, $\chi_{665}(132,·)$, $\chi_{665}(134,·)$, $\chi_{665}(39,·)$, $\chi_{665}(493,·)$, $\chi_{665}(398,·)$, $\chi_{665}(208,·)$, $\chi_{665}(324,·)$, $\chi_{665}(607,·)$, $\chi_{665}(571,·)$, $\chi_{665}(191,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{41} a^{9} + \frac{18}{41} a^{8} + \frac{5}{41} a^{7} - \frac{11}{41} a^{6} - \frac{2}{41} a^{5} - \frac{20}{41} a^{4} - \frac{16}{41} a^{3} - \frac{19}{41} a^{2} - \frac{16}{41} a$, $\frac{1}{160501921} a^{10} + \frac{695891}{160501921} a^{9} - \frac{26588773}{160501921} a^{8} - \frac{13115109}{160501921} a^{7} - \frac{31217797}{160501921} a^{6} - \frac{7456896}{160501921} a^{5} + \frac{46832470}{160501921} a^{4} - \frac{36959600}{160501921} a^{3} + \frac{10016623}{160501921} a^{2} - \frac{945550}{160501921} a + \frac{9609}{134989}$, $\frac{1}{253533582561078256894379929} a^{11} - \frac{523141913489129190}{253533582561078256894379929} a^{10} - \frac{1956599704770243998133624}{253533582561078256894379929} a^{9} - \frac{95152608067475545311971936}{253533582561078256894379929} a^{8} - \frac{27081479286394572057517168}{253533582561078256894379929} a^{7} - \frac{15168573505016863717403970}{253533582561078256894379929} a^{6} - \frac{24280488331902128096293039}{253533582561078256894379929} a^{5} - \frac{72289687028536081553008865}{253533582561078256894379929} a^{4} - \frac{113027432105648235028950932}{253533582561078256894379929} a^{3} - \frac{45415554505361439231143259}{253533582561078256894379929} a^{2} + \frac{88662586645603355521582416}{253533582561078256894379929} a + \frac{938590412398876169}{2293835107922573179}$
Class group and class number
$C_{2}\times C_{4}\times C_{1636}$, which has order $13088$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104.882003477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 4.0.2211125.1, 6.6.300125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.12.9.1 | $x^{12} - 10 x^{8} - 375 x^{4} - 2000$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |
| $7$ | 7.12.10.5 | $x^{12} + 56 x^{6} + 1323$ | $6$ | $2$ | $10$ | $C_{12}$ | $[\ ]_{6}^{2}$ |
| $19$ | 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |