Properties

Label 12.0.25600000000...000.16
Degree $12$
Signature $[0, 6]$
Discriminant $2^{24}\cdot 5^{16}$
Root discriminant $34.20$
Ramified primes $2, 5$
Class number $6$
Class group $[6]$
Galois group 12T183

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![94, 172, 394, 640, 570, 324, 222, 104, 45, 10, 11, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 11*x^10 + 10*x^9 + 45*x^8 + 104*x^7 + 222*x^6 + 324*x^5 + 570*x^4 + 640*x^3 + 394*x^2 + 172*x + 94)
 
gp: K = bnfinit(x^12 - 2*x^11 + 11*x^10 + 10*x^9 + 45*x^8 + 104*x^7 + 222*x^6 + 324*x^5 + 570*x^4 + 640*x^3 + 394*x^2 + 172*x + 94, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} + 11 x^{10} + 10 x^{9} + 45 x^{8} + 104 x^{7} + 222 x^{6} + 324 x^{5} + 570 x^{4} + 640 x^{3} + 394 x^{2} + 172 x + 94 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2560000000000000000=2^{24}\cdot 5^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.20$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7701425389741} a^{11} - \frac{2764257358336}{7701425389741} a^{10} + \frac{3708535633023}{7701425389741} a^{9} - \frac{332121559816}{7701425389741} a^{8} - \frac{1663542711731}{7701425389741} a^{7} - \frac{3281084648145}{7701425389741} a^{6} - \frac{1250310391558}{7701425389741} a^{5} + \frac{1837927324825}{7701425389741} a^{4} - \frac{759102568762}{7701425389741} a^{3} - \frac{1877293747088}{7701425389741} a^{2} - \frac{2826544073569}{7701425389741} a - \frac{1553371942481}{7701425389741}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6}$, which has order $6$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8532.04896841 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

12T183:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for S_6(12)
Character table for S_6(12)

Intermediate fields

\(\Q(\sqrt{-10}) \), 6.4.40000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 6 siblings: data not computed
Degree 10 sibling: data not computed
Degree 12 sibling: data not computed
Degree 15 siblings: data not computed
Degree 20 siblings: data not computed
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.8.18.55$x^{8} + 2 x^{6} + 4 x^{3} + 10$$8$$1$$18$$D_4\times C_2$$[2, 2, 3]^{2}$
$5$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.10.15.13$x^{10} - 20 x^{6} + 10$$10$$1$$15$$F_5$$[7/4]_{4}$