Properties

Label 12.0.25482311042...4576.1
Degree $12$
Signature $[0, 6]$
Discriminant $2^{12}\cdot 3^{6}\cdot 7^{8}\cdot 23^{6}$
Root discriminant $60.79$
Ramified primes $2, 3, 7, 23$
Class number $1404$ (GRH)
Class group $[6, 234]$ (GRH)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![697801, -99100, 264195, -23428, 39521, -3108, 4117, -366, 287, -14, 9, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 9*x^10 - 14*x^9 + 287*x^8 - 366*x^7 + 4117*x^6 - 3108*x^5 + 39521*x^4 - 23428*x^3 + 264195*x^2 - 99100*x + 697801)
 
gp: K = bnfinit(x^12 - 2*x^11 + 9*x^10 - 14*x^9 + 287*x^8 - 366*x^7 + 4117*x^6 - 3108*x^5 + 39521*x^4 - 23428*x^3 + 264195*x^2 - 99100*x + 697801, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} + 9 x^{10} - 14 x^{9} + 287 x^{8} - 366 x^{7} + 4117 x^{6} - 3108 x^{5} + 39521 x^{4} - 23428 x^{3} + 264195 x^{2} - 99100 x + 697801 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2548231104297008664576=2^{12}\cdot 3^{6}\cdot 7^{8}\cdot 23^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.79$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1932=2^{2}\cdot 3\cdot 7\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{1932}(1,·)$, $\chi_{1932}(323,·)$, $\chi_{1932}(1381,·)$, $\chi_{1932}(1703,·)$, $\chi_{1932}(781,·)$, $\chi_{1932}(1103,·)$, $\chi_{1932}(275,·)$, $\chi_{1932}(277,·)$, $\chi_{1932}(599,·)$, $\chi_{1932}(505,·)$, $\chi_{1932}(827,·)$, $\chi_{1932}(1885,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{35} a^{9} + \frac{16}{35} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{7} a^{5} - \frac{3}{35} a^{4} - \frac{1}{7} a^{3} - \frac{16}{35} a^{2} + \frac{9}{35} a + \frac{13}{35}$, $\frac{1}{1275959755} a^{10} + \frac{11571661}{1275959755} a^{9} - \frac{16268152}{1275959755} a^{8} + \frac{64960747}{182279965} a^{7} - \frac{60084618}{255191951} a^{6} + \frac{218685672}{1275959755} a^{5} + \frac{31117580}{255191951} a^{4} + \frac{17984262}{182279965} a^{3} + \frac{12888981}{26039995} a^{2} + \frac{329586608}{1275959755} a + \frac{56719674}{255191951}$, $\frac{1}{64924661489624755} a^{11} - \frac{9605733}{64924661489624755} a^{10} + \frac{263953912099922}{64924661489624755} a^{9} - \frac{62597811910803}{142691563713461} a^{8} + \frac{27479798632592983}{64924661489624755} a^{7} + \frac{15064011316517949}{64924661489624755} a^{6} - \frac{25136143540027528}{64924661489624755} a^{5} - \frac{54537242923608}{142691563713461} a^{4} - \frac{6290658872236}{9274951641374965} a^{3} - \frac{4181687638819711}{64924661489624755} a^{2} - \frac{1738500650506840}{12984932297924951} a + \frac{12880554031262}{101922545509615}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{6}\times C_{234}$, which has order $1404$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 553.0667020684372 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{-69}) \), \(\Q(\sqrt{-23}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{3}, \sqrt{-23})\), 6.6.4148928.1, 6.0.50480006976.3, 6.0.29212967.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
2.6.6.5$x^{6} - 2 x^{4} + x^{2} - 3$$2$$3$$6$$C_6$$[2]^{3}$
$3$3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$7$7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
7.6.4.3$x^{6} + 56 x^{3} + 1323$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
$23$23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
23.6.3.2$x^{6} - 529 x^{2} + 48668$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$