Normalized defining polynomial
\( x^{12} - 4 x^{11} + 92 x^{10} - 300 x^{9} + 3971 x^{8} - 9660 x^{7} + 97334 x^{6} - 167928 x^{5} + \cdots + 52322057 \)
Invariants
Degree: | $12$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 6]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(25358702738605805230358528\) \(\medspace = 2^{18}\cdot 13^{8}\cdot 17^{9}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(130.92\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}13^{2/3}17^{3/4}\approx 130.92138351184528$ | ||
Ramified primes: | \(2\), \(13\), \(17\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
$\card{ \Gal(K/\Q) }$: | $12$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(1768=2^{3}\cdot 13\cdot 17\) | ||
Dirichlet character group: | $\lbrace$$\chi_{1768}(1,·)$, $\chi_{1768}(523,·)$, $\chi_{1768}(1121,·)$, $\chi_{1768}(1225,·)$, $\chi_{1768}(939,·)$, $\chi_{1768}(1361,·)$, $\chi_{1768}(1075,·)$, $\chi_{1768}(659,·)$, $\chi_{1768}(1067,·)$, $\chi_{1768}(1665,·)$, $\chi_{1768}(1257,·)$, $\chi_{1768}(1483,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | 4.0.314432.2$^{2}$, 12.0.25358702738605805230358528.1$^{30}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a$, $\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{8}-\frac{1}{4}a^{7}-\frac{1}{4}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{4}$, $\frac{1}{631748836}a^{10}+\frac{56632033}{631748836}a^{9}+\frac{91285361}{631748836}a^{8}-\frac{5575786}{157937209}a^{7}+\frac{63320067}{315874418}a^{6}+\frac{226502585}{631748836}a^{5}-\frac{312597209}{631748836}a^{4}+\frac{41461593}{631748836}a^{3}+\frac{40966996}{157937209}a^{2}-\frac{145574579}{631748836}a-\frac{9865938}{157937209}$, $\frac{1}{10\!\cdots\!52}a^{11}-\frac{20143395833}{54\!\cdots\!26}a^{10}-\frac{36\!\cdots\!15}{10\!\cdots\!52}a^{9}+\frac{47\!\cdots\!93}{54\!\cdots\!26}a^{8}+\frac{19\!\cdots\!25}{10\!\cdots\!52}a^{7}-\frac{15\!\cdots\!99}{10\!\cdots\!52}a^{6}+\frac{23\!\cdots\!63}{54\!\cdots\!26}a^{5}-\frac{40\!\cdots\!21}{10\!\cdots\!52}a^{4}-\frac{80\!\cdots\!37}{54\!\cdots\!26}a^{3}-\frac{62\!\cdots\!49}{54\!\cdots\!26}a^{2}+\frac{51\!\cdots\!57}{10\!\cdots\!52}a+\frac{39\!\cdots\!31}{10\!\cdots\!52}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{26}\times C_{338}$, which has order $8788$ (assuming GRH)
Relative class number: $8788$ (assuming GRH)
Unit group
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{7051202169360}{27\!\cdots\!13}a^{11}-\frac{9187613265100}{27\!\cdots\!13}a^{10}+\frac{347440856193576}{27\!\cdots\!13}a^{9}+\frac{319680107545237}{27\!\cdots\!13}a^{8}+\frac{64\!\cdots\!80}{27\!\cdots\!13}a^{7}+\frac{39\!\cdots\!84}{27\!\cdots\!13}a^{6}-\frac{14\!\cdots\!76}{27\!\cdots\!13}a^{5}+\frac{11\!\cdots\!18}{27\!\cdots\!13}a^{4}-\frac{20\!\cdots\!84}{27\!\cdots\!13}a^{3}+\frac{15\!\cdots\!00}{27\!\cdots\!13}a^{2}-\frac{15\!\cdots\!40}{27\!\cdots\!13}a+\frac{87\!\cdots\!42}{27\!\cdots\!13}$, $\frac{13814861071500}{27\!\cdots\!13}a^{11}+\frac{34754653454794}{27\!\cdots\!13}a^{10}+\frac{572275994956592}{27\!\cdots\!13}a^{9}+\frac{52\!\cdots\!52}{27\!\cdots\!13}a^{8}+\frac{47\!\cdots\!92}{27\!\cdots\!13}a^{7}+\frac{25\!\cdots\!54}{27\!\cdots\!13}a^{6}-\frac{21\!\cdots\!12}{27\!\cdots\!13}a^{5}+\frac{61\!\cdots\!91}{27\!\cdots\!13}a^{4}-\frac{51\!\cdots\!44}{27\!\cdots\!13}a^{3}+\frac{79\!\cdots\!24}{27\!\cdots\!13}a^{2}-\frac{27\!\cdots\!24}{27\!\cdots\!13}a+\frac{49\!\cdots\!46}{27\!\cdots\!13}$, $\frac{29450227032770}{27\!\cdots\!13}a^{11}-\frac{288486223292697}{27\!\cdots\!13}a^{10}+\frac{28\!\cdots\!21}{27\!\cdots\!13}a^{9}-\frac{37\!\cdots\!71}{54\!\cdots\!26}a^{8}+\frac{11\!\cdots\!20}{27\!\cdots\!13}a^{7}-\frac{55\!\cdots\!47}{27\!\cdots\!13}a^{6}+\frac{22\!\cdots\!04}{27\!\cdots\!13}a^{5}-\frac{17\!\cdots\!39}{54\!\cdots\!26}a^{4}+\frac{22\!\cdots\!76}{27\!\cdots\!13}a^{3}-\frac{14\!\cdots\!69}{54\!\cdots\!26}a^{2}+\frac{94\!\cdots\!30}{27\!\cdots\!13}a-\frac{73\!\cdots\!25}{54\!\cdots\!26}$, $\frac{8584163791910}{27\!\cdots\!13}a^{11}-\frac{314053263482391}{27\!\cdots\!13}a^{10}+\frac{19\!\cdots\!53}{27\!\cdots\!13}a^{9}-\frac{48\!\cdots\!49}{54\!\cdots\!26}a^{8}+\frac{10\!\cdots\!48}{27\!\cdots\!13}a^{7}-\frac{84\!\cdots\!85}{27\!\cdots\!13}a^{6}+\frac{24\!\cdots\!92}{27\!\cdots\!13}a^{5}-\frac{31\!\cdots\!57}{54\!\cdots\!26}a^{4}+\frac{29\!\cdots\!04}{27\!\cdots\!13}a^{3}-\frac{33\!\cdots\!17}{54\!\cdots\!26}a^{2}+\frac{13\!\cdots\!94}{27\!\cdots\!13}a-\frac{18\!\cdots\!75}{54\!\cdots\!26}$, $\frac{260}{157937209}a^{11}-\frac{3242}{157937209}a^{10}+\frac{29570}{157937209}a^{9}-\frac{221385}{157937209}a^{8}+\frac{1243840}{157937209}a^{7}-\frac{6885166}{157937209}a^{6}+\frac{25756480}{157937209}a^{5}-\frac{112467875}{157937209}a^{4}+\frac{285328360}{157937209}a^{3}-\frac{1022218817}{157937209}a^{2}+\frac{1283016620}{157937209}a-\frac{4461256592}{157937209}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 3407.79685773 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 3407.79685773 \cdot 8788}{2\cdot\sqrt{25358702738605805230358528}}\cr\approx \mathstrut & 0.182957174429 \end{aligned}\] (assuming GRH)
Galois group
A cyclic group of order 12 |
The 12 conjugacy class representatives for $C_{12}$ |
Character table for $C_{12}$ |
Intermediate fields
\(\Q(\sqrt{17}) \), 3.3.169.1, 4.0.314432.2, 6.6.140320193.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.12.0.1}{12} }$ | ${\href{/padicField/5.4.0.1}{4} }^{3}$ | ${\href{/padicField/7.12.0.1}{12} }$ | ${\href{/padicField/11.12.0.1}{12} }$ | R | R | ${\href{/padicField/19.6.0.1}{6} }^{2}$ | ${\href{/padicField/23.12.0.1}{12} }$ | ${\href{/padicField/29.12.0.1}{12} }$ | ${\href{/padicField/31.4.0.1}{4} }^{3}$ | ${\href{/padicField/37.12.0.1}{12} }$ | ${\href{/padicField/41.12.0.1}{12} }$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{6}$ | ${\href{/padicField/53.1.0.1}{1} }^{12}$ | ${\href{/padicField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.6.9.7 | $x^{6} + 32 x^{4} + 2 x^{3} + 301 x^{2} - 58 x + 811$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
2.6.9.7 | $x^{6} + 32 x^{4} + 2 x^{3} + 301 x^{2} - 58 x + 811$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
\(13\) | 13.6.4.3 | $x^{6} + 36 x^{5} + 438 x^{4} + 1898 x^{3} + 1344 x^{2} + 5604 x + 21705$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
13.6.4.3 | $x^{6} + 36 x^{5} + 438 x^{4} + 1898 x^{3} + 1344 x^{2} + 5604 x + 21705$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
\(17\) | 17.12.9.1 | $x^{12} + 4 x^{10} + 56 x^{9} + 57 x^{8} + 168 x^{7} + 1044 x^{6} - 11256 x^{5} + 3356 x^{4} + 10080 x^{3} + 97736 x^{2} + 58576 x + 57252$ | $4$ | $3$ | $9$ | $C_{12}$ | $[\ ]_{4}^{3}$ |