Normalized defining polynomial
\( x^{12} + 2 x^{10} - 5 x^{9} - 15 x^{8} - 9 x^{7} + 19 x^{6} - 339 x^{5} + 1551 x^{4} - 3158 x^{3} + 5096 x^{2} - 5243 x + 2149 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24919973321128389=3^{6}\cdot 7^{8}\cdot 181^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 181$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{13} a^{10} - \frac{6}{13} a^{9} + \frac{5}{13} a^{8} - \frac{6}{13} a^{7} - \frac{1}{13} a^{6} - \frac{1}{13} a^{3} - \frac{3}{13} a^{2} - \frac{5}{13}$, $\frac{1}{207303992063623} a^{11} - \frac{3002589233454}{207303992063623} a^{10} - \frac{51249587716471}{207303992063623} a^{9} + \frac{76974429072644}{207303992063623} a^{8} - \frac{33186082493987}{207303992063623} a^{7} - \frac{68809173963479}{207303992063623} a^{6} + \frac{503318560143}{2278065846853} a^{5} + \frac{71576088244595}{207303992063623} a^{4} + \frac{93236820101811}{207303992063623} a^{3} + \frac{14195645115269}{29614856009089} a^{2} - \frac{923734374}{213056518051} a + \frac{14529823931743}{29614856009089}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3161823}{389500033} a^{11} + \frac{6431615}{389500033} a^{10} + \frac{18042369}{389500033} a^{9} + \frac{19454887}{389500033} a^{8} - \frac{11990477}{389500033} a^{7} - \frac{57477310}{389500033} a^{6} - \frac{4815297}{29961541} a^{5} - \frac{1221001745}{389500033} a^{4} + \frac{183324451}{29961541} a^{3} - \frac{4520842165}{389500033} a^{2} + \frac{5616870301}{389500033} a - \frac{2146917470}{389500033} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1105.23502312 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times A_4$ (as 12T51):
| A solvable group of order 96 |
| The 20 conjugacy class representatives for $D_4\times A_4$ |
| Character table for $D_4\times A_4$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{7})^+\), 6.0.64827.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 181 | Data not computed | ||||||