Properties

Label 12.0.24357588812...0000.3
Degree $12$
Signature $[0, 6]$
Discriminant $2^{18}\cdot 3^{6}\cdot 5^{6}\cdot 13^{8}$
Root discriminant $60.56$
Ramified primes $2, 3, 5, 13$
Class number $1872$ (GRH)
Class group $[2, 6, 156]$ (GRH)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![680545, -156080, 274854, -58470, 50219, -8316, 4907, -514, 294, -10, 13, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 + 13*x^10 - 10*x^9 + 294*x^8 - 514*x^7 + 4907*x^6 - 8316*x^5 + 50219*x^4 - 58470*x^3 + 274854*x^2 - 156080*x + 680545)
 
gp: K = bnfinit(x^12 - 2*x^11 + 13*x^10 - 10*x^9 + 294*x^8 - 514*x^7 + 4907*x^6 - 8316*x^5 + 50219*x^4 - 58470*x^3 + 274854*x^2 - 156080*x + 680545, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} + 13 x^{10} - 10 x^{9} + 294 x^{8} - 514 x^{7} + 4907 x^{6} - 8316 x^{5} + 50219 x^{4} - 58470 x^{3} + 274854 x^{2} - 156080 x + 680545 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2435758881214464000000=2^{18}\cdot 3^{6}\cdot 5^{6}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $60.56$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1560=2^{3}\cdot 3\cdot 5\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{1560}(1,·)$, $\chi_{1560}(581,·)$, $\chi_{1560}(289,·)$, $\chi_{1560}(841,·)$, $\chi_{1560}(1249,·)$, $\chi_{1560}(269,·)$, $\chi_{1560}(29,·)$, $\chi_{1560}(529,·)$, $\chi_{1560}(1301,·)$, $\chi_{1560}(601,·)$, $\chi_{1560}(989,·)$, $\chi_{1560}(341,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{145} a^{9} + \frac{13}{145} a^{8} + \frac{12}{29} a^{7} - \frac{33}{145} a^{6} + \frac{17}{145} a^{5} + \frac{3}{29} a^{4} + \frac{33}{145} a^{3} + \frac{16}{145} a^{2} - \frac{4}{29} a + \frac{5}{29}$, $\frac{1}{144616475} a^{10} - \frac{23483}{28923295} a^{9} + \frac{6037421}{144616475} a^{8} - \frac{22756028}{144616475} a^{7} - \frac{59014549}{144616475} a^{6} - \frac{46342626}{144616475} a^{5} - \frac{32222407}{144616475} a^{4} + \frac{46311567}{144616475} a^{3} + \frac{69117917}{144616475} a^{2} - \frac{5752726}{28923295} a - \frac{2317048}{28923295}$, $\frac{1}{10964787728094275} a^{11} + \frac{1000929}{353702829938525} a^{10} + \frac{28412104517156}{10964787728094275} a^{9} - \frac{220599084091094}{10964787728094275} a^{8} + \frac{2993523314705719}{10964787728094275} a^{7} + \frac{2814604391036468}{10964787728094275} a^{6} - \frac{1786681098511486}{10964787728094275} a^{5} + \frac{1466163156650559}{10964787728094275} a^{4} + \frac{78958659487323}{438591509123771} a^{3} - \frac{3192054375277442}{10964787728094275} a^{2} + \frac{147137955198843}{2192957545618855} a - \frac{484155922950022}{2192957545618855}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{6}\times C_{156}$, which has order $1872$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 615.5445050404002 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{-30}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-6}) \), 3.3.169.1, \(\Q(\sqrt{5}, \sqrt{-6})\), 6.0.49353408000.11, 6.6.3570125.1, 6.0.394827264.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ R ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.18.23$x^{12} + 52 x^{10} - 28 x^{8} + 8 x^{6} + 64 x^{4} - 32 x^{2} + 64$$2$$6$$18$$C_6\times C_2$$[3]^{6}$
$3$3.12.6.2$x^{12} + 108 x^{6} - 243 x^{2} + 2916$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$
$5$5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
$13$13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
13.6.4.3$x^{6} + 65 x^{3} + 1352$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$