Normalized defining polynomial
\( x^{12} - x^{11} + 339 x^{10} - 339 x^{9} + 44279 x^{8} - 44279 x^{7} + 2786135 x^{6} - 2786135 x^{5} + 85955767 x^{4} - 85955767 x^{3} + 1167160983 x^{2} - 1167160983 x + 5183066071 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2401666331349765944953125=3^{6}\cdot 5^{6}\cdot 7^{6}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $107.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1365=3\cdot 5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1365}(1,·)$, $\chi_{1365}(1156,·)$, $\chi_{1365}(839,·)$, $\chi_{1365}(841,·)$, $\chi_{1365}(1259,·)$, $\chi_{1365}(944,·)$, $\chi_{1365}(946,·)$, $\chi_{1365}(211,·)$, $\chi_{1365}(629,·)$, $\chi_{1365}(314,·)$, $\chi_{1365}(316,·)$, $\chi_{1365}(734,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{591920083} a^{7} + \frac{277505889}{591920083} a^{6} + \frac{182}{591920083} a^{5} + \frac{80752625}{591920083} a^{4} + \frac{9464}{591920083} a^{3} + \frac{189751960}{591920083} a^{2} + \frac{123032}{591920083} a + \frac{44042288}{591920083}$, $\frac{1}{591920083} a^{8} + \frac{208}{591920083} a^{6} - \frac{112112118}{591920083} a^{5} + \frac{13520}{591920083} a^{4} + \frac{223426735}{591920083} a^{3} + \frac{281216}{591920083} a^{2} - \frac{110105720}{591920083} a + \frac{913952}{591920083}$, $\frac{1}{591920083} a^{9} + \frac{174831104}{591920083} a^{6} - \frac{24336}{591920083} a^{5} + \frac{643059}{591920083} a^{4} - \frac{1687296}{591920083} a^{3} + \frac{80132161}{591920083} a^{2} - \frac{24676704}{591920083} a - \frac{281994659}{591920083}$, $\frac{1}{591920083} a^{10} - \frac{30420}{591920083} a^{6} + \frac{145066613}{591920083} a^{5} - \frac{2636400}{591920083} a^{4} - \frac{104804110}{591920083} a^{3} - \frac{61691760}{591920083} a^{2} + \frac{273434233}{591920083} a - \frac{213864768}{591920083}$, $\frac{1}{591920083} a^{11} - \frac{90013753}{591920083} a^{6} + \frac{2900040}{591920083} a^{5} - \frac{78296060}{591920083} a^{4} + \frac{226203120}{591920083} a^{3} + \frac{123408017}{591920083} a^{2} - \frac{22751826}{591920083} a + \frac{251253131}{591920083}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{1588}$, which has order $101632$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.24221925.2, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | R | R | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.12.6.2 | $x^{12} + 7203 x^{4} - 16807 x^{2} + 588245$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.11.4 | $x^{12} - 832$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |