Normalized defining polynomial
\( x^{12} - 4 x^{11} + 154 x^{10} - 496 x^{9} + 9167 x^{8} - 23140 x^{7} + 254842 x^{6} - 473884 x^{5} + 3306578 x^{4} - 4102284 x^{3} + 23868696 x^{2} - 16329464 x + 75924577 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(239020026860167472611328=2^{33}\cdot 7^{8}\cdot 13^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1456=2^{4}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1456}(1,·)$, $\chi_{1456}(571,·)$, $\chi_{1456}(417,·)$, $\chi_{1456}(1299,·)$, $\chi_{1456}(1353,·)$, $\chi_{1456}(779,·)$, $\chi_{1456}(883,·)$, $\chi_{1456}(625,·)$, $\chi_{1456}(51,·)$, $\chi_{1456}(729,·)$, $\chi_{1456}(1145,·)$, $\chi_{1456}(155,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{13} a^{6} - \frac{2}{13} a^{5} - \frac{3}{13} a^{4} + \frac{6}{13} a^{3} + \frac{2}{13} a^{2} - \frac{4}{13} a + \frac{1}{13}$, $\frac{1}{13} a^{7} + \frac{6}{13} a^{5} + \frac{1}{13} a^{3} + \frac{6}{13} a + \frac{2}{13}$, $\frac{1}{13} a^{8} - \frac{1}{13} a^{5} + \frac{6}{13} a^{4} + \frac{3}{13} a^{3} - \frac{6}{13} a^{2} - \frac{6}{13}$, $\frac{1}{13} a^{9} + \frac{4}{13} a^{5} + \frac{2}{13} a^{2} + \frac{3}{13} a + \frac{1}{13}$, $\frac{1}{80189154877} a^{10} - \frac{3021174960}{80189154877} a^{9} + \frac{411518004}{80189154877} a^{8} - \frac{1551664619}{80189154877} a^{7} + \frac{1526185695}{80189154877} a^{6} - \frac{4967043928}{80189154877} a^{5} + \frac{35244340489}{80189154877} a^{4} + \frac{20513217392}{80189154877} a^{3} + \frac{21234293167}{80189154877} a^{2} - \frac{4654069976}{80189154877} a - \frac{10967610390}{80189154877}$, $\frac{1}{20748490111699592132813} a^{11} - \frac{10560540528}{20748490111699592132813} a^{10} + \frac{592135868866584155042}{20748490111699592132813} a^{9} - \frac{42933077904382945010}{1596037700899968625601} a^{8} + \frac{324068564958798893863}{20748490111699592132813} a^{7} + \frac{64165570828549710004}{20748490111699592132813} a^{6} - \frac{961525474227098370572}{20748490111699592132813} a^{5} - \frac{5118745591923371179075}{20748490111699592132813} a^{4} - \frac{7736911281766860919470}{20748490111699592132813} a^{3} + \frac{3998822636783025233425}{20748490111699592132813} a^{2} + \frac{84038316985424138862}{506060734431697369093} a - \frac{6240536214172701391643}{20748490111699592132813}$
Class group and class number
$C_{2}\times C_{34}\times C_{170}$, which has order $11560$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279.150027194 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), 4.0.346112.2, 6.6.1229312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }$ | ${\href{/LocalNumberField/5.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/11.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.33.376 | $x^{12} + 36 x^{10} + 42 x^{8} - 40 x^{6} + 40 x^{4} + 32 x^{2} - 56$ | $4$ | $3$ | $33$ | $C_{12}$ | $[3, 4]^{3}$ |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |