Normalized defining polynomial
\( x^{12} - 4 x^{11} + 46 x^{10} - 136 x^{9} + 1016 x^{8} - 2364 x^{7} + 13958 x^{6} - 24876 x^{5} + 121251 x^{4} - 149724 x^{3} + 599732 x^{2} - 390180 x + 1308601 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2334520781612309807104=2^{24}\cdot 7^{8}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(952=2^{3}\cdot 7\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{952}(1,·)$, $\chi_{952}(611,·)$, $\chi_{952}(613,·)$, $\chi_{952}(135,·)$, $\chi_{952}(137,·)$, $\chi_{952}(407,·)$, $\chi_{952}(205,·)$, $\chi_{952}(67,·)$, $\chi_{952}(681,·)$, $\chi_{952}(883,·)$, $\chi_{952}(477,·)$, $\chi_{952}(543,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{8} + \frac{1}{9} a^{6} + \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{1}{3} a^{3} - \frac{2}{9} a^{2} - \frac{1}{9} a + \frac{1}{9}$, $\frac{1}{514827} a^{10} + \frac{25187}{514827} a^{9} - \frac{25172}{171609} a^{8} + \frac{42373}{514827} a^{7} + \frac{78815}{514827} a^{6} - \frac{220369}{514827} a^{5} - \frac{14864}{514827} a^{4} + \frac{54661}{514827} a^{3} + \frac{136540}{514827} a^{2} + \frac{172325}{514827} a + \frac{29663}{514827}$, $\frac{1}{2145945353313627} a^{11} + \frac{178057764}{238438372590403} a^{10} + \frac{27429423313027}{715315117771209} a^{9} - \frac{962028649705787}{2145945353313627} a^{8} + \frac{83552571928565}{715315117771209} a^{7} + \frac{714053790560999}{2145945353313627} a^{6} + \frac{81343080493760}{238438372590403} a^{5} + \frac{939865292930776}{2145945353313627} a^{4} + \frac{342857188348076}{2145945353313627} a^{3} - \frac{55803997658816}{2145945353313627} a^{2} - \frac{65160181259534}{238438372590403} a - \frac{4273958069497}{10074860813679}$
Class group and class number
$C_{3}\times C_{6}\times C_{84}$, which has order $1512$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279.1500271937239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-17}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{-17})\), 6.0.6039609856.5, 6.6.1229312.1, 6.0.754951232.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.79 | $x^{12} - 4 x^{11} - 10 x^{10} + 16 x^{9} - 6 x^{8} + 16 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} + 16 x^{3} + 16 x^{2} + 8$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $17$ | 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 17.6.3.1 | $x^{6} - 34 x^{4} + 289 x^{2} - 44217$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |