Normalized defining polynomial
\( x^{12} - x^{11} + 105 x^{10} - 105 x^{9} + 4265 x^{8} - 4265 x^{7} + 84137 x^{6} - 84137 x^{5} + 829609 x^{4} - 829609 x^{3} + 3811497 x^{2} - 3811497 x + 7219369 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2314517744209204100853=3^{6}\cdot 11^{6}\cdot 13^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(429=3\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{429}(32,·)$, $\chi_{429}(1,·)$, $\chi_{429}(98,·)$, $\chi_{429}(100,·)$, $\chi_{429}(197,·)$, $\chi_{429}(166,·)$, $\chi_{429}(199,·)$, $\chi_{429}(298,·)$, $\chi_{429}(395,·)$, $\chi_{429}(164,·)$, $\chi_{429}(362,·)$, $\chi_{429}(133,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{1282969} a^{7} + \frac{416248}{1282969} a^{6} + \frac{56}{1282969} a^{5} - \frac{547600}{1282969} a^{4} + \frac{896}{1282969} a^{3} - \frac{156355}{1282969} a^{2} + \frac{3584}{1282969} a + \frac{292244}{1282969}$, $\frac{1}{1282969} a^{8} + \frac{64}{1282969} a^{6} + \frac{518923}{1282969} a^{5} + \frac{1280}{1282969} a^{4} + \frac{229416}{1282969} a^{3} + \frac{8192}{1282969} a^{2} + \frac{552359}{1282969} a + \frac{8192}{1282969}$, $\frac{1}{1282969} a^{9} - \frac{461569}{1282969} a^{6} - \frac{2304}{1282969} a^{5} + \frac{635653}{1282969} a^{4} - \frac{49152}{1282969} a^{3} + \frac{295327}{1282969} a^{2} - \frac{221184}{1282969} a + \frac{540919}{1282969}$, $\frac{1}{1282969} a^{10} - \frac{2880}{1282969} a^{6} - \frac{458832}{1282969} a^{5} - \frac{76800}{1282969} a^{4} - \frac{537836}{1282969} a^{3} - \frac{552960}{1282969} a^{2} - \frac{225795}{1282969} a - \frac{589824}{1282969}$, $\frac{1}{1282969} a^{11} + \frac{42362}{1282969} a^{6} + \frac{84480}{1282969} a^{5} + \frac{426034}{1282969} a^{4} - \frac{538418}{1282969} a^{3} - \frac{206076}{1282969} a^{2} - \frac{531656}{1282969} a + \frac{35056}{1282969}$
Class group and class number
$C_{2}\times C_{22}\times C_{44}$, which has order $1936$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 120.784031363 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 12 |
| The 12 conjugacy class representatives for $C_{12}$ |
| Character table for $C_{12}$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 3.3.169.1, 4.0.2392533.1, \(\Q(\zeta_{13})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }$ | ${\href{/LocalNumberField/41.12.0.1}{12} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | 11.12.6.2 | $x^{12} + 14641 x^{4} - 322102 x^{2} + 14172488$ | $2$ | $6$ | $6$ | $C_{12}$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.12.11.1 | $x^{12} - 13$ | $12$ | $1$ | $11$ | $C_{12}$ | $[\ ]_{12}$ |