Normalized defining polynomial
\( x^{12} + 128 x^{10} + 6493 x^{8} + 166076 x^{6} + 2261086 x^{4} + 16095776 x^{2} + 58232161 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(222957405416602891976704=2^{24}\cdot 7^{10}\cdot 19^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $88.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1064=2^{3}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1064}(1,·)$, $\chi_{1064}(227,·)$, $\chi_{1064}(837,·)$, $\chi_{1064}(1063,·)$, $\chi_{1064}(457,·)$, $\chi_{1064}(75,·)$, $\chi_{1064}(305,·)$, $\chi_{1064}(531,·)$, $\chi_{1064}(533,·)$, $\chi_{1064}(759,·)$, $\chi_{1064}(989,·)$, $\chi_{1064}(607,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7631} a^{7} + \frac{63}{7631} a^{5} + \frac{1134}{7631} a^{3} - \frac{2528}{7631} a$, $\frac{1}{14414959} a^{8} - \frac{2304499}{14414959} a^{6} + \frac{5289417}{14414959} a^{4} + \frac{6529608}{14414959} a^{2} - \frac{179}{1889}$, $\frac{1}{14414959} a^{9} + \frac{81}{14414959} a^{7} + \frac{6328367}{14414959} a^{5} - \frac{3599210}{14414959} a^{3} - \frac{3700753}{14414959} a$, $\frac{1}{14414959} a^{10} + \frac{5598319}{14414959} a^{6} + \frac{31291}{1108843} a^{4} + \frac{754482}{14414959} a^{2} - \frac{613}{1889}$, $\frac{1}{14414959} a^{11} - \frac{677}{14414959} a^{7} - \frac{490073}{1108843} a^{5} - \frac{5925022}{14414959} a^{3} - \frac{454281}{1108843} a$
Class group and class number
$C_{2}\times C_{2}\times C_{4030}$, which has order $16120$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 279.1500271937239 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-266}) \), \(\Q(\sqrt{-133}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{-133})\), 6.0.59022957056.3, 6.0.7377869632.2, 6.6.1229312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.12.24.318 | $x^{12} + 60 x^{11} + 14 x^{10} + 36 x^{9} - 34 x^{8} - 32 x^{7} - 48 x^{6} - 32 x^{5} + 36 x^{4} - 16 x^{3} - 40 x^{2} - 48 x + 56$ | $4$ | $3$ | $24$ | $C_6\times C_2$ | $[2, 3]^{3}$ |
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $19$ | 19.12.6.1 | $x^{12} + 41154 x^{6} - 2476099 x^{2} + 423412929$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |