Properties

Label 12.0.22295740541...6704.6
Degree $12$
Signature $[0, 6]$
Discriminant $2^{24}\cdot 7^{10}\cdot 19^{6}$
Root discriminant $88.24$
Ramified primes $2, 7, 19$
Class number $16120$ (GRH)
Class group $[2, 2, 4030]$ (GRH)
Galois group $C_6\times C_2$ (as 12T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![58232161, 0, 16095776, 0, 2261086, 0, 166076, 0, 6493, 0, 128, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 + 128*x^10 + 6493*x^8 + 166076*x^6 + 2261086*x^4 + 16095776*x^2 + 58232161)
 
gp: K = bnfinit(x^12 + 128*x^10 + 6493*x^8 + 166076*x^6 + 2261086*x^4 + 16095776*x^2 + 58232161, 1)
 

Normalized defining polynomial

\( x^{12} + 128 x^{10} + 6493 x^{8} + 166076 x^{6} + 2261086 x^{4} + 16095776 x^{2} + 58232161 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(222957405416602891976704=2^{24}\cdot 7^{10}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $88.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1064=2^{3}\cdot 7\cdot 19\)
Dirichlet character group:    $\lbrace$$\chi_{1064}(1,·)$, $\chi_{1064}(227,·)$, $\chi_{1064}(837,·)$, $\chi_{1064}(1063,·)$, $\chi_{1064}(457,·)$, $\chi_{1064}(75,·)$, $\chi_{1064}(305,·)$, $\chi_{1064}(531,·)$, $\chi_{1064}(533,·)$, $\chi_{1064}(759,·)$, $\chi_{1064}(989,·)$, $\chi_{1064}(607,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7631} a^{7} + \frac{63}{7631} a^{5} + \frac{1134}{7631} a^{3} - \frac{2528}{7631} a$, $\frac{1}{14414959} a^{8} - \frac{2304499}{14414959} a^{6} + \frac{5289417}{14414959} a^{4} + \frac{6529608}{14414959} a^{2} - \frac{179}{1889}$, $\frac{1}{14414959} a^{9} + \frac{81}{14414959} a^{7} + \frac{6328367}{14414959} a^{5} - \frac{3599210}{14414959} a^{3} - \frac{3700753}{14414959} a$, $\frac{1}{14414959} a^{10} + \frac{5598319}{14414959} a^{6} + \frac{31291}{1108843} a^{4} + \frac{754482}{14414959} a^{2} - \frac{613}{1889}$, $\frac{1}{14414959} a^{11} - \frac{677}{14414959} a^{7} - \frac{490073}{1108843} a^{5} - \frac{5925022}{14414959} a^{3} - \frac{454281}{1108843} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4030}$, which has order $16120$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 279.1500271937239 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_6$ (as 12T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 12
The 12 conjugacy class representatives for $C_6\times C_2$
Character table for $C_6\times C_2$

Intermediate fields

\(\Q(\sqrt{-266}) \), \(\Q(\sqrt{-133}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{7})^+\), \(\Q(\sqrt{2}, \sqrt{-133})\), 6.0.59022957056.3, 6.0.7377869632.2, 6.6.1229312.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ R ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{12}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.12.24.318$x^{12} + 60 x^{11} + 14 x^{10} + 36 x^{9} - 34 x^{8} - 32 x^{7} - 48 x^{6} - 32 x^{5} + 36 x^{4} - 16 x^{3} - 40 x^{2} - 48 x + 56$$4$$3$$24$$C_6\times C_2$$[2, 3]^{3}$
$7$7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
7.6.5.2$x^{6} - 7$$6$$1$$5$$C_6$$[\ ]_{6}$
$19$19.12.6.1$x^{12} + 41154 x^{6} - 2476099 x^{2} + 423412929$$2$$6$$6$$C_6\times C_2$$[\ ]_{2}^{6}$