Normalized defining polynomial
\( x^{12} - 2 x^{11} - 11 x^{10} + 38 x^{9} + 42 x^{8} + 6 x^{7} + 265 x^{6} - 242 x^{5} + 653 x^{4} - 380 x^{3} + 1118 x^{2} - 228 x + 62 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(218971048064843776=2^{28}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{39} a^{10} + \frac{4}{39} a^{9} - \frac{3}{13} a^{8} + \frac{2}{13} a^{6} + \frac{1}{13} a^{5} - \frac{5}{39} a^{4} + \frac{1}{3} a^{3} - \frac{17}{39} a^{2} - \frac{1}{39} a + \frac{4}{39}$, $\frac{1}{4757674568212137} a^{11} + \frac{4566864675718}{432515869837467} a^{10} + \frac{898940938696}{432515869837467} a^{9} - \frac{567667846657364}{1585891522737379} a^{8} - \frac{744607660429007}{1585891522737379} a^{7} - \frac{25081606493439}{144171956612489} a^{6} - \frac{1825876987450328}{4757674568212137} a^{5} + \frac{22957902081347}{4757674568212137} a^{4} - \frac{679692285923531}{1585891522737379} a^{3} + \frac{516505451176821}{1585891522737379} a^{2} + \frac{1156277703541372}{4757674568212137} a - \frac{29242753019929}{4757674568212137}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10454.1840556 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{-26}) \), 3.1.104.1 x3, 6.0.4499456.2, 6.2.467943424.1, 6.0.1124864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 4 sibling: | data not computed |
| Degree 6 siblings: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.13 | $x^{4} + 4 x^{2} + 14$ | $4$ | $1$ | $11$ | $D_{4}$ | $[3, 4]^{2}$ |
| 2.4.11.13 | $x^{4} + 4 x^{2} + 14$ | $4$ | $1$ | $11$ | $D_{4}$ | $[3, 4]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |