Properties

Label 12.0.21897104806...776.32
Degree $12$
Signature $[0, 6]$
Discriminant $2^{28}\cdot 13^{8}$
Root discriminant $27.86$
Ramified primes $2, 13$
Class number $2$
Class group $[2]$
Galois group $S_4$ (as 12T9)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![62, -228, 1118, -380, 653, -242, 265, 6, 42, 38, -11, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^12 - 2*x^11 - 11*x^10 + 38*x^9 + 42*x^8 + 6*x^7 + 265*x^6 - 242*x^5 + 653*x^4 - 380*x^3 + 1118*x^2 - 228*x + 62)
 
gp: K = bnfinit(x^12 - 2*x^11 - 11*x^10 + 38*x^9 + 42*x^8 + 6*x^7 + 265*x^6 - 242*x^5 + 653*x^4 - 380*x^3 + 1118*x^2 - 228*x + 62, 1)
 

Normalized defining polynomial

\( x^{12} - 2 x^{11} - 11 x^{10} + 38 x^{9} + 42 x^{8} + 6 x^{7} + 265 x^{6} - 242 x^{5} + 653 x^{4} - 380 x^{3} + 1118 x^{2} - 228 x + 62 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $12$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 6]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(218971048064843776=2^{28}\cdot 13^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $27.86$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{39} a^{10} + \frac{4}{39} a^{9} - \frac{3}{13} a^{8} + \frac{2}{13} a^{6} + \frac{1}{13} a^{5} - \frac{5}{39} a^{4} + \frac{1}{3} a^{3} - \frac{17}{39} a^{2} - \frac{1}{39} a + \frac{4}{39}$, $\frac{1}{4757674568212137} a^{11} + \frac{4566864675718}{432515869837467} a^{10} + \frac{898940938696}{432515869837467} a^{9} - \frac{567667846657364}{1585891522737379} a^{8} - \frac{744607660429007}{1585891522737379} a^{7} - \frac{25081606493439}{144171956612489} a^{6} - \frac{1825876987450328}{4757674568212137} a^{5} + \frac{22957902081347}{4757674568212137} a^{4} - \frac{679692285923531}{1585891522737379} a^{3} + \frac{516505451176821}{1585891522737379} a^{2} + \frac{1156277703541372}{4757674568212137} a - \frac{29242753019929}{4757674568212137}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $5$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 10454.1840556 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$S_4$ (as 12T9):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 24
The 5 conjugacy class representatives for $S_4$
Character table for $S_4$

Intermediate fields

\(\Q(\sqrt{-26}) \), 3.1.104.1 x3, 6.0.4499456.2, 6.2.467943424.1, 6.0.1124864.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 4 sibling: data not computed
Degree 6 siblings: data not computed
Degree 8 sibling: data not computed
Degree 12 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/5.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/7.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.11.13$x^{4} + 4 x^{2} + 14$$4$$1$$11$$D_{4}$$[3, 4]^{2}$
2.4.11.13$x^{4} + 4 x^{2} + 14$$4$$1$$11$$D_{4}$$[3, 4]^{2}$
2.4.6.2$x^{4} - 2 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$13$13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.4.3.4$x^{4} + 104$$4$$1$$3$$C_4$$[\ ]_{4}$
13.4.3.4$x^{4} + 104$$4$$1$$3$$C_4$$[\ ]_{4}$