Normalized defining polynomial
\( x^{12} - 2 x^{11} + x^{10} + 20 x^{9} - 26 x^{8} - 16 x^{7} + 92 x^{6} - 112 x^{5} + 160 x^{4} + \cdots + 16 \)
Invariants
| Degree: | $12$ |
| |
| Signature: | $[0, 6]$ |
| |
| Discriminant: |
\(218971048064843776\)
\(\medspace = 2^{28}\cdot 13^{8}\)
|
| |
| Root discriminant: | \(27.86\) |
| |
| Galois root discriminant: | $2^{11/4}13^{7/8}\approx 63.46480081404899$ | ||
| Ramified primes: |
\(2\), \(13\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{8}-\frac{1}{4}a^{6}-\frac{1}{2}a^{3}$, $\frac{1}{4}a^{9}-\frac{1}{4}a^{7}-\frac{1}{2}a^{4}$, $\frac{1}{8}a^{10}-\frac{1}{8}a^{8}-\frac{1}{4}a^{7}$, $\frac{1}{31501048}a^{11}+\frac{1875301}{31501048}a^{10}+\frac{280639}{31501048}a^{9}+\frac{3024963}{31501048}a^{8}+\frac{826015}{15750524}a^{7}+\frac{3748447}{15750524}a^{6}+\frac{1615197}{7875262}a^{5}-\frac{1714204}{3937631}a^{4}-\frac{1456440}{3937631}a^{3}+\frac{564450}{3937631}a^{2}+\frac{812945}{3937631}a+\frac{1353585}{3937631}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{4}$, which has order $4$ |
| |
| Narrow class group: | $C_{4}$, which has order $4$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{833471}{15750524}a^{11}-\frac{2124631}{15750524}a^{10}+\frac{1311307}{15750524}a^{9}+\frac{16809369}{15750524}a^{8}-\frac{7772065}{3937631}a^{7}-\frac{4819531}{7875262}a^{6}+\frac{22572507}{3937631}a^{5}-\frac{64723593}{7875262}a^{4}+\frac{39889714}{3937631}a^{3}-\frac{42704753}{3937631}a^{2}+\frac{27956588}{3937631}a-\frac{5441443}{3937631}$, $\frac{1914325}{15750524}a^{11}-\frac{2595875}{15750524}a^{10}-\frac{369441}{15750524}a^{9}+\frac{19416217}{7875262}a^{8}-\frac{12692105}{7875262}a^{7}-\frac{59038877}{15750524}a^{6}+\frac{72949325}{7875262}a^{5}-\frac{28862457}{3937631}a^{4}+\frac{45633602}{3937631}a^{3}-\frac{40030278}{3937631}a^{2}+\frac{12951348}{3937631}a+\frac{12236161}{3937631}$, $\frac{375953}{15750524}a^{11}+\frac{81565}{15750524}a^{10}-\frac{874339}{7875262}a^{9}+\frac{8830367}{15750524}a^{8}+\frac{7034591}{15750524}a^{7}-\frac{9275877}{3937631}a^{6}+\frac{12474307}{7875262}a^{5}+\frac{12045823}{3937631}a^{4}-\frac{34647353}{7875262}a^{3}+\frac{23347782}{3937631}a^{2}-\frac{31426163}{3937631}a+\frac{21011333}{3937631}$, $\frac{378693}{31501048}a^{11}-\frac{101075}{15750524}a^{10}-\frac{635863}{31501048}a^{9}+\frac{2128933}{7875262}a^{8}+\frac{691755}{15750524}a^{7}-\frac{2318340}{3937631}a^{6}+\frac{7948505}{7875262}a^{5}+\frac{5520207}{7875262}a^{4}-\frac{3255131}{7875262}a^{3}+\frac{2902646}{3937631}a^{2}-\frac{7098850}{3937631}a+\frac{8111349}{3937631}$, $\frac{4796917}{31501048}a^{11}-\frac{2085023}{7875262}a^{10}-\frac{3171579}{31501048}a^{9}+\frac{46941921}{15750524}a^{8}-\frac{49677449}{15750524}a^{7}-\frac{52191413}{7875262}a^{6}+\frac{37248803}{3937631}a^{5}-\frac{49745436}{3937631}a^{4}+\frac{65698617}{3937631}a^{3}-\frac{56717821}{3937631}a^{2}+\frac{12580239}{3937631}a-\frac{8367887}{3937631}$
|
| |
| Regulator: | \( 8168.83020863 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{6}\cdot 8168.83020863 \cdot 4}{2\cdot\sqrt{218971048064843776}}\cr\approx \mathstrut & 2.14820501698 \end{aligned}\]
Galois group
$C_4^2:D_6$ (as 12T97):
| A solvable group of order 192 |
| The 20 conjugacy class representatives for $C_4^2:D_6$ |
| Character table for $C_4^2:D_6$ |
Intermediate fields
| 3.1.104.1, 6.0.4499456.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Minimal sibling: | 12.0.9251526780739649536.23 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.6.0.1}{6} }^{2}$ | ${\href{/padicField/5.3.0.1}{3} }^{4}$ | ${\href{/padicField/7.6.0.1}{6} }^{2}$ | ${\href{/padicField/11.8.0.1}{8} }{,}\,{\href{/padicField/11.2.0.1}{2} }{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/17.3.0.1}{3} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{6}$ | ${\href{/padicField/23.8.0.1}{8} }{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.2.0.1}{2} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{4}$ | ${\href{/padicField/37.3.0.1}{3} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }^{2}$ | ${\href{/padicField/47.6.0.1}{6} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.2.0.1}{2} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ | |
| 2.1.8.22d1.25 | $x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 8 x + 14$ | $8$ | $1$ | $22$ | $Q_8:C_2$ | $$[2, 3, \frac{7}{2}]^{2}$$ | |
|
\(13\)
| 13.2.1.0a1.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 13.1.2.1a1.1 | $x^{2} + 13$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 13.1.8.7a1.4 | $x^{8} + 104$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $$[\ ]_{8}^{2}$$ |