Normalized defining polynomial
\( x^{12} + 102 x^{10} - 52 x^{9} + 8703 x^{8} + 2496 x^{7} + 470242 x^{6} + 300456 x^{5} + 18065637 x^{4} + 14790204 x^{3} + 438168960 x^{2} + 279668376 x + 5374163484 \)
Invariants
| Degree: | $12$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(218764100914962817683456000000=2^{18}\cdot 3^{18}\cdot 5^{6}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $278.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4680=2^{3}\cdot 3^{2}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4680}(1,·)$, $\chi_{4680}(601,·)$, $\chi_{4680}(841,·)$, $\chi_{4680}(989,·)$, $\chi_{4680}(29,·)$, $\chi_{4680}(2669,·)$, $\chi_{4680}(3389,·)$, $\chi_{4680}(121,·)$, $\chi_{4680}(3509,·)$, $\chi_{4680}(2521,·)$, $\chi_{4680}(3481,·)$, $\chi_{4680}(2909,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{6} - \frac{1}{6} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} + \frac{1}{12} a^{2} - \frac{1}{2}$, $\frac{1}{12} a^{7} + \frac{1}{12} a^{5} + \frac{1}{3} a^{4} - \frac{1}{4} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{348} a^{8} + \frac{5}{348} a^{7} - \frac{13}{348} a^{6} - \frac{1}{116} a^{5} - \frac{97}{348} a^{4} + \frac{167}{348} a^{3} + \frac{37}{174} a^{2} + \frac{17}{58} a - \frac{14}{29}$, $\frac{1}{1044} a^{9} - \frac{1}{1044} a^{8} - \frac{7}{522} a^{7} - \frac{41}{1044} a^{6} - \frac{83}{522} a^{5} + \frac{169}{1044} a^{4} + \frac{1}{4} a^{3} + \frac{5}{29} a^{2} + \frac{5}{58} a - \frac{1}{29}$, $\frac{1}{11484} a^{10} - \frac{1}{5742} a^{9} - \frac{13}{11484} a^{8} + \frac{13}{638} a^{7} + \frac{223}{11484} a^{6} - \frac{25}{2871} a^{5} + \frac{97}{261} a^{4} + \frac{4}{87} a^{3} + \frac{326}{957} a^{2} + \frac{98}{319} a - \frac{115}{319}$, $\frac{1}{110250300786930775687289834772} a^{11} - \frac{1439533782648300081208669}{110250300786930775687289834772} a^{10} + \frac{9685584687690005117227723}{55125150393465387843644917386} a^{9} - \frac{37847980639446848316773533}{36750100262310258562429944924} a^{8} + \frac{53326298870444768273376397}{9187525065577564640607486231} a^{7} + \frac{80051061496464959353223444}{27562575196732693921822458693} a^{6} + \frac{15266327318746541520100391909}{110250300786930775687289834772} a^{5} + \frac{1364893990392938288183125505}{10022754616993706880662712252} a^{4} - \frac{6435421224096315124423240169}{18375050131155129281214972462} a^{3} + \frac{11981617675972841670005465335}{36750100262310258562429944924} a^{2} + \frac{1494356216638716202335508250}{3062508355192521546869162077} a + \frac{2157232967398685574627854127}{6125016710385043093738324154}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{12}\times C_{5928}$, which has order $1138176$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16557.868316895623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_6$ (as 12T2):
| An abelian group of order 12 |
| The 12 conjugacy class representatives for $C_6\times C_2$ |
| Character table for $C_6\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-390}) \), \(\Q(\sqrt{13}) \), 3.3.13689.1, \(\Q(\sqrt{13}, \sqrt{-30})\), 6.0.35978634432000.3, 6.0.467722247616000.2, 6.6.2436053373.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.11 | $x^{6} + 6 x^{4} + 12$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| $5$ | 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |
| $13$ | 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |